

Reducing uncertainties in projections of global sea level rise

Steven J. Phipps¹ and Jason L. Roberts^{2,3}

¹Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia ²Australian Antarctic Division, Kingston, Australia ³Antarctic Climate & Ecosystems Cooperative Research Centre, Hobart, Australia

AMOS-ICTMO 2019, Darwin, Australia 11-14 June 2019

Likely changes in global sea level by 2081-2100

IPCC AR5 WG1 report (2013)

Mechanisms of ice sheet instability

Antarctic contribution to global sea level (2000–2500)

DeConto and Pollard (2016), Nature

Steven J. Phipps and Jason L. Roberts

An integrated approach to reducing uncertainties

How do we project changes in global sea level?

Figure 15: PISM's view of interfaces between an ice sheet and the outside world

Constraining ice sheet model parameterisations

- Problem:
 - Ice sheet model parameters are highly under-constrained.
- Solution:
 - Use PISM to simulate the past evolution of the Antarctic Ice Sheet.
 - Run the model many times. Perturb the model physics each time, sampling as many different parameter combinations as possible.
 - Identify the model configurations where the simulated evolution of the ice sheet agrees best with the known history.

Constraining parameterisations: Boundary conditions

- Use the CSIRO Mk3L climate system model to simulate the period from the Last Glacial Maximum (~21,000 years ago) to present.
- Continue 5,000 years into the future under the RCP8.5 scenario.

Simulated Antarctic contribution to global sea level

- Use the climate model output to drive 100 simulations using PISM.
- 69/100 simulations complete successfully, without crashing.

Constraining the model: Using the past

- LGM sea level contribution was at least 5 m (Noble et al., in prep.).
- 10/69 simulations satisfy this criterion.

Constraining the model: Using the present

 ∃ →

11 / 16

< A

Constraining the model: Using the present

Steven J. Phipps and Jason L. Roberts

Uncertainties in global sea level rise

AMOS-ICTMO 2019

3 x 3

Image: A matrix

12 / 16

Constraining the model: Using the present

- Present-day ice distribution should be consistent with observations.
- 17/69 simulations satisfy this criterion.

Bringing it together: Using the past and present

- Now we apply the LGM and present-day criteria simultaneously.
- 5/69 simulations satisfy both criteria.

Bringing it together: Using the past and present

Conclusions

- We have shown that information on the past and present states of the Antarctic Ice Sheet can be used to reduce uncertainty in future projections of global sea level.
- Reconstructions of past changes provide the greatest benefit, by eliminating unrealistic configurations of the ice sheet model.
- The primary benefit is to reduce *uncertainty* in the projections, rather than to revise the best estimates e.g. under the RCP8.5 scenario, the projected Antarctic contribution to global sea level by 2500 CE is refined from 3.90±2.40 m to 3.70±0.80 m.
- Our estimates are lower than those of DeConto and Pollard (2016), who project an Antarctic contribution to global sea level of 15.65±2.00 m by 2500 CE.