Part 1:

PMIP3

Palaeoclimate Modelling Intercomparison Project

- Phase 1 (1991–2001) :
 - Atmospheric GCMs
 - Primary experiments were 6 ka (mid-Holocene) and 21 ka (LGM)
 - 22 models participated
 - Contributed towards IPCC TAR
- Phase 2 (2002–2007) :
 - Atmosphere-ocean(-vegetation) GCMs
 - Primary experiments were 6 ka (mid-Holocene) and 21 ka (LGM)
 - 18 models participated
 - Contributed towards IPCC AR4

Phase 3 (2008–)

- $\bullet\,$ Theme 1: Evaluation of earth system models at 6 ka and 21 ka
 - Vegetation, biogeochemical cycles, chemistry, ice sheets...
 - Use of new data syntheses for model evaluation
- Theme 2: Interglacials and warm periods
 - Last interglacial (~130–115 ka) snapshot and transient
 - Mid-Pliocene (\sim 3.3–3.0 Ma) snapshot (PlioMIP)
- Theme 3: Abrupt climate changes
 - Transient simulations of last deglaciation, 8.2 ka event...
- Theme 4: Uncertainties: characterisation and understanding
 - Uncertainties in reconstructions, boundary conditions...
 - Weight models according to a palaeoclimate skill index?
- Will contribute towards IPCC AR5

Part 2:

Simulating the evolution of ENSO over the late Holocene

El Niño has changed...

- Proxy reconstructions from across the Pacific Basin show that:
 - "Modern" El Niño began 7-5 ka BP, with only weak decadal-scale events beforehand
 - El Niño was 15-60% weaker at 6 ka BP than at present
 - Gradual strengthening of El Niño thereafter
 - Evidence of a peak in strength at 2-1 ka, possibly earlier in the western Pacific than in the east

Early modelling work

- Clement et al. (2000):
 - Used the Zebiak-Cane model to simulate the past 12 ka
 - Simple atmosphere-ocean model; restricted to the tropical Pacific
 - Established that orbitally-driven changes in the seasonal cycle of insolation in the tropics can alter ENSO behaviour

Coupled modelling studies: 6 ka versus 0 ka BP

	Model	Diagnostic	% change
Otto-Bliesner (1999)	CSM	Niño 3	~ 0
Liu et al. (2000)	FOAM	Niño 3.4	-20
Phipps (2006)	Mk3L-1.0	Niño 3.4	-13
Brown at al. (2006)	HadCM3	Niño 3	-12
Brown et al. (2008)	HadCM3	Niño 3	[-14, +19]
	CCSM3		-18.6
	FGOALS-1.0g		-14.6
Zheng et al. (2008)	FOAM		-11.6
	IPSL-CM4	Niño 3	-2.9
(PMIP2)	MIROC3.2		-22.5
	MRI-CGCM2.3.4fa		+3.3
	MRI-CGCM2.3.4nfa		-12.9

A picture begins to emerge?

- Insolation changes result in enhanced seasonal cycle in NH
- Intensification of summer monsoon system
- Enhanced Walker circulation
- Stronger easterly trade winds in central and western Pacific
- Increased upwelling in central and eastern Pacific
- Suppresses development of El Niño events

Simulations of the late Holocene climate

- CSIRO Mk3L climate system model v1.1:
 - Atmosphere: R21 ($5.6^{\circ} \times 3.2^{\circ}$), 18 vertical levels
 - Ocean: $2.8^{\circ} \times 1.6^{\circ}$, 21 vertical levels
 - Sea ice: Dynamic-thermodynamic
 - Land surface: Static vegetation
 - Flux adjustments applied
- Snapshot simulations for 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 and 0 ka BP:
 - Only the Earth's orbital parameters are varied
 - Atmospheric CO_2 concentration = 280ppm
 - Solar constant $= 1365 \text{ Wm}^{-2}$
 - Integrated for 1000 years
 - Simulations for 6 and 0 ka BP submitted to PMIP2

JASO zonal wind stress in Nino 4 region

Summer interannual coupling strength

Conclusions

- Modelling studies suggest orbitally-driven insolation changes account for the changes in ENSO behaviour over the Holocene. However, models and proxy reconstructions disagree on the magnitude of the changes.
- Models (almost) exhibit a consistent link between insolation changes and reduced ENSO variability in the mid-Holocene.
- Exploring this mechanism further using Mk3L, we find that it does not explain the peak in ENSO variability at 1 ka, nor the changes in the early Holocene. Other mechanisms therefore appear to be at work.
- A full understanding of the processes that drive changes in ENSO variability may be within grasp. However, this will require an approach that integrates the theory, data and modelling communities.