Modelling of the last 2ka

Steven J. Phipps¹ Helen V. McGregor²

¹Climate Change Research Centre, University of New South Wales, Australia ²School of Earth and Environmental Sciences, University of Wollongong, Australia

Modeling the Climate System

Box 3, Figure 1: The development of climate models over the last 25 years showing how the different components are first developed separately and later coupled into comprehensive climate models.

Modelling heirarchy

Fig. 1. Pictorial definition of EMICs. Adapted from Claussen (2000)

Fig. 2. The climate modeling pyramid. Adapted from Henderson-Sellers and McGuffie (1987)

National Facility, Canberra

Last 2ka: Boundary conditions are well known

MacFarling Meure et al., 2006

Last 2ka: Abundance of proxy data

Mann et al., 2008

Australian modelling capacity

- Earth System Models of Intermediate Complexity (EMICs)
 - UVic
- Low-resolution General Circulation Models (GCMs)
 - CSIRO Mk3L
 - CCSM
 - FOAM
- IPCC-class models
 - CSIRO Mk3
 - ACCESS

Transient simulations of the past 2ka

- CSIRO Mk3L climate system model v1.2:
 - Atmosphere: $5.6^{\circ} \times 3.2^{\circ}$, 18 vertical levels
 - Ocean: $2.8^{\circ} \times 1.6^{\circ}$, 21 vertical levels
 - Sea ice: Dynamic-thermodynamic
 - Land surface: Static vegetation
 - Can simulate 1000 years in three weeks
- Three transient simulations of the past 2,000 years:
 - Earth's orbital geometry is varied
 - Atmospheric CO₂, CH₄ and N₂O concentrations varied according to Law Dome record (MacFarling Meure et al., 2006)
 - No solar or volcanic forcing
 - The three ensemble members differ only in the initial conditions

Simulated NH surface air temperature anomaly 0.1 0.0 Temperature relative to 1961-1990 mean (°C) -0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 500 1000 1500 2000 0 Calendar year Member 1 Member 2 Member 3

— Mean

Simulated rainfall in SW Western Australia

Simulated rainfall in the Mallee

ENSO variability: Model simulations vs. Kiritimati δ^{18} O

Data-model integration

- Data-model integration is a two-way process
- The data constrains the model simulations
- The models provide the dynamical interpretation of the data

Changes in ENSO variability: model-data comparison

Northern Hemisphere summers were warmer at 8 ka BP ...

June-July-August surface air temperature, 8 ka minus 0 ka BP (K)

... which enhanced the Asian summer monsoon system ...

June-July-August mean sea level pressure, 8 ka minus 0 ka BP (hPa)

... and made it harder for El Niño events to develop

Amplitude of SST variability in Nino 3.4 region

Future challenges and opportunities

- More comprehensive models
 - Carbon cycle (+ nitrogen + phosphorous + ...)
 - Ocean biogeochemistry
 - Stable isotopes (¹⁸O, ¹³C, ...)
- Data-model integration how do we do this?
 - Metrics
 - Baselines
 - Low-frequency variability
- Regional modelling for Australasia
- Palaeoclimate data simulation