8,000 years of El Niño: Towards data-model integration

Steven J. Phipps¹ Helen V. McGregor²

¹Climate Change Research Centre, University of New South Wales, Australia ²School of Earth and Environmental Sciences, University of Wollongong, Australia

ENSO has changed over the Holocene...

- ENSO variability has increased over the past 8,000 years
- El Niño events have increased in frequency and magnitude
- Evidence of a peak in ENSO variability at 2–1 ka BP
- Strong variability on centennial and millennial timescales
- These changes provide an opportunity to learn more about ENSO dynamics

Microatolls from Kiritimati Island

The CSIRO Mk3L climate system model

- Low-resolution coupled general circulation model:
 - Atmosphere: $5.6^{\circ} \times 3.2^{\circ}$, 18 vertical levels
 - Ocean: $2.8^{\circ} \times 1.6^{\circ}$, 21 vertical levels
 - Sea ice: Dynamic-thermodynamic
 - Land surface: Static vegetation
- One 10,000-year pre-industrial control simulation
- Three transient simulations of the past 8,000 years

Pre-industrial control simulation: PC1 of monthly SST anomalies

Simulated changes in ENSO variability

Changes in ENSO variability: model-data comparison

Amplitude of SST variability in Nino 3.4 region

Integrating the data and the models

- Data-model integration is a two-way process
- The data constrains the model simulations
- The models provide the dynamical interpretation of the data

Northern Hemisphere summers were warmer at 8 ka BP ...

June-July-August surface air temperature, 8 ka minus 0 ka BP (K)

... which enhanced the Asian summer monsoon system ...

June-July-August mean sea level pressure, 8 ka minus 0 ka BP (hPa)

... and made it harder for El Niño events to develop

Conclusions

- Past changes in El Niño-Southern Oscillation provide an opportunity to learn more about ENSO dynamics. However, to realise this opportunity, we need to integrate the data and the models.
- Low-frequency ENSO variability represents a challenge for data-model integration. Ideally, the sampling period for both the data and models should be at least 200 years.
- A climate system model is able to reproduce the long-term upward trend in ENSO variability over the past 8,000 years. The model suggests that this trend is driven by increasing summer insolation over the Asian landmass.

References

Phipps, S. J., and J. N. Brown (2010), Understanding ENSO dynamics through the exploration of past climates, *IOP Conference Series: Earth and Environmental Science*, 9(1), 012010. McGregor, H.V., et al., Reproducibility of oxygen isotope (δ^{18} O) proxy climate records in *Porites* coral microatolls, *Geochimica et Cosmochimica Acta*, *in prep*. Phipps, S. J., and H. V. McGregor, 8,000 years of El Niño: A coral data-transient climate model

comparison, Geophysical Research Letters, in prep.