How an ice sheet model sees the world

Figure 15: PISM's view of interfaces between an ice sheet and the outside world

Uncertainty in boundary conditions

Steven J. Phipps, IMAS, UTAS

2/9

Impact on "tuning" an ice sheet model

PICO 4.10

0930-1000

Steven J. Phipps, IMAS, UTAS

Geothermal heat flux in modelling

EGU General Assembly 2018

mpiexec -n 4 pismr -skip -skip_max 10 -i nomass_20km.nc -sia_e 3.0 -atmosphere given -atmosphere_given_file pism_Antarctica_5km.nc -surface simple -ocean pik -meltfactor_pik 5e-3 -ssa_method fd -ssa_e 0.6 -pik -calving eigen_calving,thickness_calving -eigen_calving_K 2.0e18 -thickness_calving_threshold 200.0 -stress_balance ssa+sia -hydrology null -pseudo_plastic -pseudo_plastic_q 0.25 -till_effective_fraction_overburden 0.02 -tauc_slippery_grounding_lines -topg_to_phi 15.0,40.0, -300.0,700.0 -ys 0 -y 100000 -ts_file ts_run_20km.nc -ts times 0:1:100000 -extra file extra run 20km.nc -extra_times 0:1000:100000 -extra_vars thk,usurf, velbase_mag,velbar_mag,mask,diffusivity,tauc,bmelt, tillwat,temppabase,hardav,Href,gl_mask -o run_20km.nc -o_size big

イロト 不得下 イヨト イヨト

"Tuning" an ice sheet model

- Use the model to simulate the present state of the Antarctic Ice Sheet.
- Run the model many times. Perturb the model physics each time, sampling as many different parameter combinations as possible.
- Identify the model configuration(s) where the simulated ice sheet geometry agrees best with observations.

Parameter	Description	Minimum	Maximum
-sia_e	Shallow ice enhancement factor	1.0	4.5
-ssa_e	Shallow shelf enhancement factor	0.5	1.6
-pseudo_plastic_q	Exponent of basal resistance model	0.15	1.00
-till_effective_fraction_overburden	Effective till pressure scaling factor	0.01	0.04
-eigen_calving_K	Calving rate scaling factor	3.0e16	1.0e19
-thickness_calving_threshold	Minimum thickness of floating ice shelves	150.0	300.0

э

"Tuning" an ice sheet model: Ice thickness

"Tuning" an ice sheet model: Roles of physics and GHF

Steven J. Phipps, IMAS, UTAS