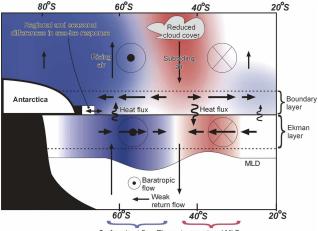

Modulation of the Southern Hemisphere circulation by large-scale geoengineering

Steven J. Phipps^{1,2,3} and Andrew J. Lenton¹

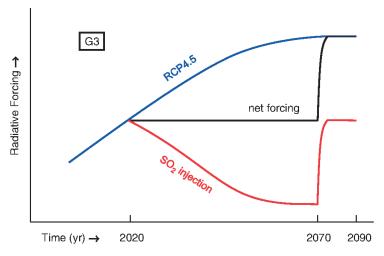
¹CSIRO Wealth from Oceans Flagship ²ARC Centre of Excellence for Climate System Science ³Climate Change Research Centre, UNSW Australia

Fourth GeoMIP Meeting 24–25 April 2014


The Southern Annular Mode

Thompson and Wallace (2000), J. Climate

Climatic effects of the positive phase of SAM

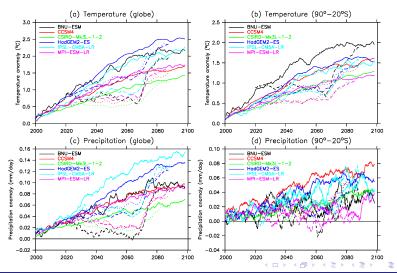


Surface heat flux, Ekman transport and MLD changes act in concert to produce SST changes

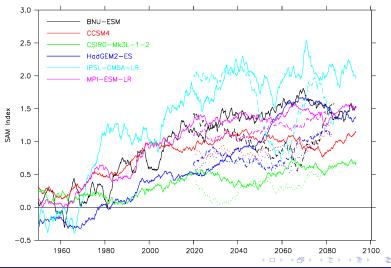
Sen Gupta and England (2006), J. Climate

Schematic of GeoMIP experiments G3 and G3solar

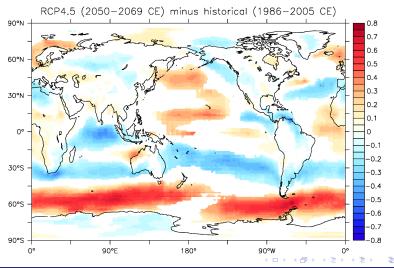
Kravitz et al. (2011), Atmos. Sci. Lett.


GeoMIP simulations

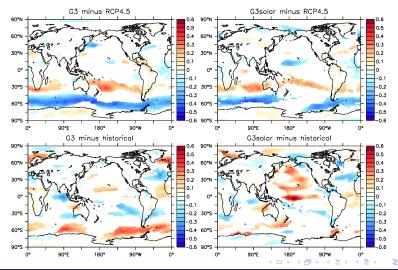
Model	G3	G3solar	Ozone
BNU-ESM	1	-	Prescribed
CCSM4	-	3	Prescribed
CSIRO-Mk3L-1-2	-	3	Fixed
HadGEM2-ES	3	3	Prescribed
IPSL-CM5A-LR	1	-	Calculated
MPI-ESM-LR	3	-	Prescribed


Acknowledgements: Olivier Boucher, James M. Haywood, Duoying Ji, Andy Jones, John Moore, Ulrike Niemeier, Hauke Schmidt, Michael Schulz and Simone Tilmes

Evolution of temperature and precipitation

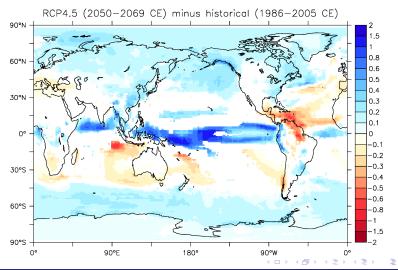


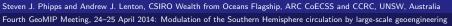
Evolution of the SAM Index

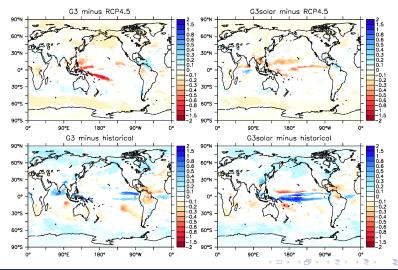


Steven J. Phipps and Andrew J. Lenton, CSIRO Wealth from Oceans Flagship, ARC CoECSS and CCRC, UNSW, Australia Fourth GeoMIP Meeting, 24–25 April 2014: Modulation of the Southern Hemisphere circulation by large-scale geoengineering

Impact of anthropogenic forcings on 10m u-wind (ms⁻¹)




Impact of geoengineering on 10m u-wind (ms⁻¹)



Impact of anthropogenic forcings on precip. (mm/day)

Impact of geoengineering on precip. (mm/day)

Conclusions

- In the Southern Hemisphere, the climatic response to large-scale geoengineering is characterised by a shift towards a more neutral state of the Southern Annular Mode.
- As a result, there is a northward shift and weakening of the Southern Hemisphere westerly winds.
- The shift in the storm tracks causes an increase in precipitation at \sim 30°S, partially offsetting the anthropogenic drying trend.
- These trends are consistent between models and between experiments G3 and G3solar, despite the differing natures of the forcings applied.
- The climatic impacts dissipate within $\sim \! 10$ years of any cessation of geoengineering.