General Circulation Modelling

Steven J. Phipps ARC Centre of Excellence for Climate System Science Climate Change Research Centre University of New South Wales, Sydney, Australia

> Lake Ohau Workshop 19–20 September 2013

- 2 The CSIRO Mk3L climate system model
- 3 Orbital forcing over the past 8,000 years
- External forcing and internal variability over the past 1,500 years
- 5 Conclusions

Introduction

The past 8,000 yea

Conclusions

The "handshake" question

How do we integrate proxy data and climate models in a way that extracts the maximum possible information about the dynamics of the climate system?

Steven J. Phipps, ARC CoE for Climate System Science and Climate Change Research Centre, UNSW, Sydney, Australia

Lake Ohau Workshop, 19-20 September 2013: General Circulation Modelling

The "handshake" question

- Data-model integration is a two-way process
- Proxy data can be used to constrain climate model simulations
- Climate models can provide dynamical interpretation of proxy data
- Everyone wins: we learn more about the dynamics of the climate system than when we employ the two approaches separately

The CSIRO Mk3L climate system model

GCM simulations for the Lake Ohau project

• The CSIRO Mk3L climate system model (Phipps et al., 2011, 2012)

- Atmospheric general circulation model ($5.6^{\circ} \times 3.2^{\circ}$, 18 levels)
- Ocean general circulation model ($2.8^\circ \times 1.6^\circ$, 21 levels)
- Dynamic-thermodynamic sea ice model
- Land surface scheme

Drivers of New Zealand South Island precipitation

- 10,000-year pre-industrial control simulation
- Composite mean sea level pressure and surface wind stress for years when New Zealand South Island precipitation is more than one standard deviation above or below the long-term mean

Orbital forcing over the past 8,000 years

We know that ENSO has changed over the Holocene

Steven J. Phipps, ARC CoE for Climate System Science and Climate Change Research Centre, UNSW, Sydney, Australia

Lake Ohau Workshop, 19-20 September 2013: General Circulation Modelling

Climate model simulations

- Three transient simulations of the past 8,000 years:
 - Only the Earth's orbital geometry is varied (Berger et al., 1978)
 - Each ensemble member is initialised from different years of the control simulation (i.e. a perturbed initial conditions ensemble)

Trend in annual MSLP (hPa ka⁻¹) and surface wind stress

Trend in annual precip (mm ka^{-1}) and surface wind stress

Simulated amplitude of ENSO variability (500-year mean)

Lake Ohau Workshop, 19–20 September 2013: General Circulation Modelling

Orbital forcing causes large seasonal changes in insolation

Trend in August surface air temperature (K ka $^{-1}$)

Trend in August MSLP (hPa ka^{-1}) and surface wind stress

External forcing and internal variability over the past 1,500 years

ENSO also changes on shorter timescales

Climate model simulations

- Multiple ensembles of transient simulations of the past 1500 years:
 - Orbital changes (Berger, 1978)
 - Anthropogenic greenhouse gases (MacFarling Meure et al., 2006)
 - Solar irradiance (Steinhilber et al., 2009)
 - Explosive volcanism (Gao et al., 2008)

Changes in the SAM Index

Reconstructed/simulated ENSO amplitude (30-year mean)

ENSO amplitude versus individual forcings

Ensemble	Greenhouse	Solar	Volcanic
member	gases	irradiance	eruptions
1	+0.02	-0.24	0.00
2 🥢	+0.14	+0.27	+0.10
3	+0.32	-0.09	+0.03
Mean	+0.30	-0.04	+0.09

Conclusions

Conclusions

- By integrating proxy data with climate modelling, we can use past climatic changes to study the dynamics of the climate system.
- Simulated New Zealand South Island precipitation is influenced by both SAM and ENSO/IPO.
- Orbital changes can explain long-term trends in the SH westerlies and ENSO over the past 8,000 years, with a shift towards a more positive phase of SAM and increasing ENSO variability.
- On shorter timescales, internal variability dominates. GHGs can explain the late 20th Century shift towards a more positive SAM, with the sun driving centennial-scale variability. However, there is no evidence that external forcings influence the amplitude of ENSO.
- Dynamical downscaling would be needed to capture the interactions between large-scale circulation changes and fine-scale topography.
- What can Lake Ohau tell us?