Understanding ENSO dynamics through the exploration of past climates

Steven J. Phipps¹ Jaclyn N. Brown²

¹Climate Change Research Centre, University of New South Wales, Sydney, Australia ²Centre for Australian Weather and Climate Research, Hobart, Tasmania, Australia

What is El Niño?

NOAA/PMEL/TAO

- El Niño–Southern Oscillation (ENSO) is the dominant mode of internal variability within the coupled atmosphereocean system
- Irregular period of $\sim 2-7$ years
- Average state of the system involves strong easterly trade winds pushing warm water to the east
- In an El Niño event, these winds slacken and the warm water flows eastwards
- Increased rainfall in the eastern Pacific, reduced rainfall in the west

El Niño has changed ...

- "Modern" El Niño began 7–5 ka BP, with only weak decadal-scale variability beforehand
- El Niño was 15–60% weaker at 6 ka BP than at present
- Gradual strengthening of El Niño thereafter
- Evidence of a peak in variability at 2–1 ka, possibly earlier in the western Pacific than in the east

Moy et al. (2002), Nature

... driven by large changes in seasonal insolation

Exploring ENSO in a climate system model

- CSIRO Mk3L climate system model v1.1:
 - Atmosphere: $5.6^{\circ} \times 3.2^{\circ}$, 18 vertical levels
 - Ocean: $2.8^{\circ} \times 1.6^{\circ}$, 21 vertical levels
 - Sea ice: Dynamic-thermodynamic
 - Land surface: Static vegetation
 - Can simulate 1000 years in a month
- Simulations for 8, 7, 6, 5, 4, 3, 2, 1 and 0 ka BP:
 - Only the Earth's orbital geometry is varied
 - Atmospheric CO_2 concentration = 280ppm
 - Solar constant $= 1365 \text{ Wm}^{-2}$
 - Integrated for 1000 years

Simulated changes in ENSO variability

THE UNIVERSITY OF NEW SOUTH WALES

Northern Hemisphere summers were warmer at 8 ka BP ...

June-July-August surface air temperature, 8 ka minus 0 ka BP (K)

... which enhanced the Asian summer monsoon system

June-July-August mean sea level pressure, 8 ka minus 0 ka BP (hPa)

Westerly wind bursts were "blocked" at 8 ka BP ...

... which made it harder for El Niño events to develop

ENSO has strengthened and shifted eastwards ...

July-August-September-October zonal wind stress in Nino 4 region

Conclusions

- The study of past climates allows us to learn more about ENSO dynamics, and to explore the links between ENSO and the global climate system.
- By forcing a climate system model with orbitally-driven insolation changes only, we have been able to reproduce the trends in ENSO variability over the past 8,000 years.
- Decreasing summer insolation over this period has resulted in a weakening of the Asian monsoon. This has reduced the stability of the background state of the tropical Pacific, making it easier for El Niño events to develop.
- However, other mechanisms also appear to be at work.
- A full understanding of the processes that drive changes in ENSO variability may be within grasp. However, this will require an approach that integrates the data, modelling and theory communities.

