Quantifying changes in ENSO dynamics over the Holocene

Steven J. Phipps1
Jaclyn N. Brown2

1Climate Change Research Centre, UNSW, Sydney, Australia
2Centre for Australian Weather and Climate Research, Hobart, Australia
El Niño has changed...

- Proxy reconstructions from across the Pacific Basin show that:
 - “Modern” El Niño began 7-5 ka BP, with only weak decadal-scale events beforehand
 - El Niño was 15-60% weaker at 6 ka BP than at present
 - Gradual strengthening of El Niño thereafter
 - Evidence of a peak in strength at 2-1 ka, possibly earlier in the western Pacific than in the east
Quantifying changes in ENSO dynamics over the Holocene
9th ICSHMO, Melbourne, Australia, 9-13 February 2009
Quantifying changes in ENSO dynamics over the Holocene
9th ICSHMO, Melbourne, Australia, 9-13 February 2009
Current understanding

• Previous modelling work has shown that orbitally-driven changes in insolation can alter ENSO behaviour

• Broadly consistent mechanism found to explain weaker mid-Holocene ENSO:
 – Insolation changes result in enhanced seasonal cycle in NH
 – Intensification of summer monsoon system
 – Enhanced Walker circulation
 – Stronger easterly trade winds in central and western Pacific
 – Steeper thermocline/increased upwelling in central and eastern Pacific
 – Suppresses development of El Niño events

• However, this proposed mechanism is qualitative in nature and has yet to be rigorously tested
Simulations of the late Holocene climate

- CSIRO Mk3L climate system model v1.1:
 - Atmosphere: R21 (5.6° × 3.2°), 18 vertical levels
 - Ocean: 2.8° × 1.6°, 21 vertical levels
 - Sea ice: Dynamic-thermodynamic
 - Land surface: Static vegetation
 - Flux adjustments applied

- Snapshot simulations for 8, 7, 6, 5, 4, 3, 2, 1 and 0 ka BP:
 - Only the Earth’s orbital parameters are varied
 - Atmospheric CO₂ concentration = 280ppm
 - Solar constant = 1365 Wm⁻²
 - Integrated for 1000 years
Quantifying changes in ENSO dynamics over the Holocene
9th ICSHMO, Melbourne, Australia, 9-13 February 2009

Standard deviation of Nino SST anomaly
Quantifying changes in ENSO dynamics over the Holocene
9th ICSHMO, Melbourne, Australia, 9-13 February 2009
Quantifying changes in ENSO dynamics over the Holocene
9th ICSHMO, Melbourne, Australia, 9-13 February 2009
Quantifying changes in ENSO dynamics over the Holocene
9th ICSHMO, Melbourne, Australia, 9-13 February 2009

JASO zonal wind stress in Nino 4 region
Wind power

\[W = \iint_{z=0} u \cdot \tau \, dx \, dy \]
Quantifying changes in ENSO dynamics over the Holocene
9th ICSHMO, Melbourne, Australia, 9-13 February 2009

June–July–August–September wind power

January–February–March–April wind power
Annual cycle

Wind power (Wm$^{-2}$)

Quantifying changes in ENSO dynamics over the Holocene
9th ICSHMO, Melbourne, Australia, 9-13 February 2009
Quantifying changes in ENSO dynamics over the Holocene

9th ICSHMO, Melbourne, Australia, 9-13 February 2009

Zonal wind stress anomaly at equator (Pa): 0ka BP

Zonal wind stress anomaly at equator (Pa): 8ka BP
Conclusions

• By forcing a model with orbitally-driven insolation changes only, we are able to broadly reproduce the changes in ENSO behaviour over the Holocene.

• Physical links between ENSO, the Walker Circulation and the Asian monsoon appear to explain the upward trend in variability.

• However, it does not explain the peak at 1 ka. Other mechanisms therefore appear to be at work.

• The key to understanding and quantifying past changes in ENSO behaviour may be to define better diagnostics.

• A full understanding of the processes that drive changes in ENSO variability may be within grasp. However, this will require an approach that integrates the theory, data and modelling communities.