# Using paleoclimate data to improve models of the Antarctic Ice Sheet (C41B-0663)

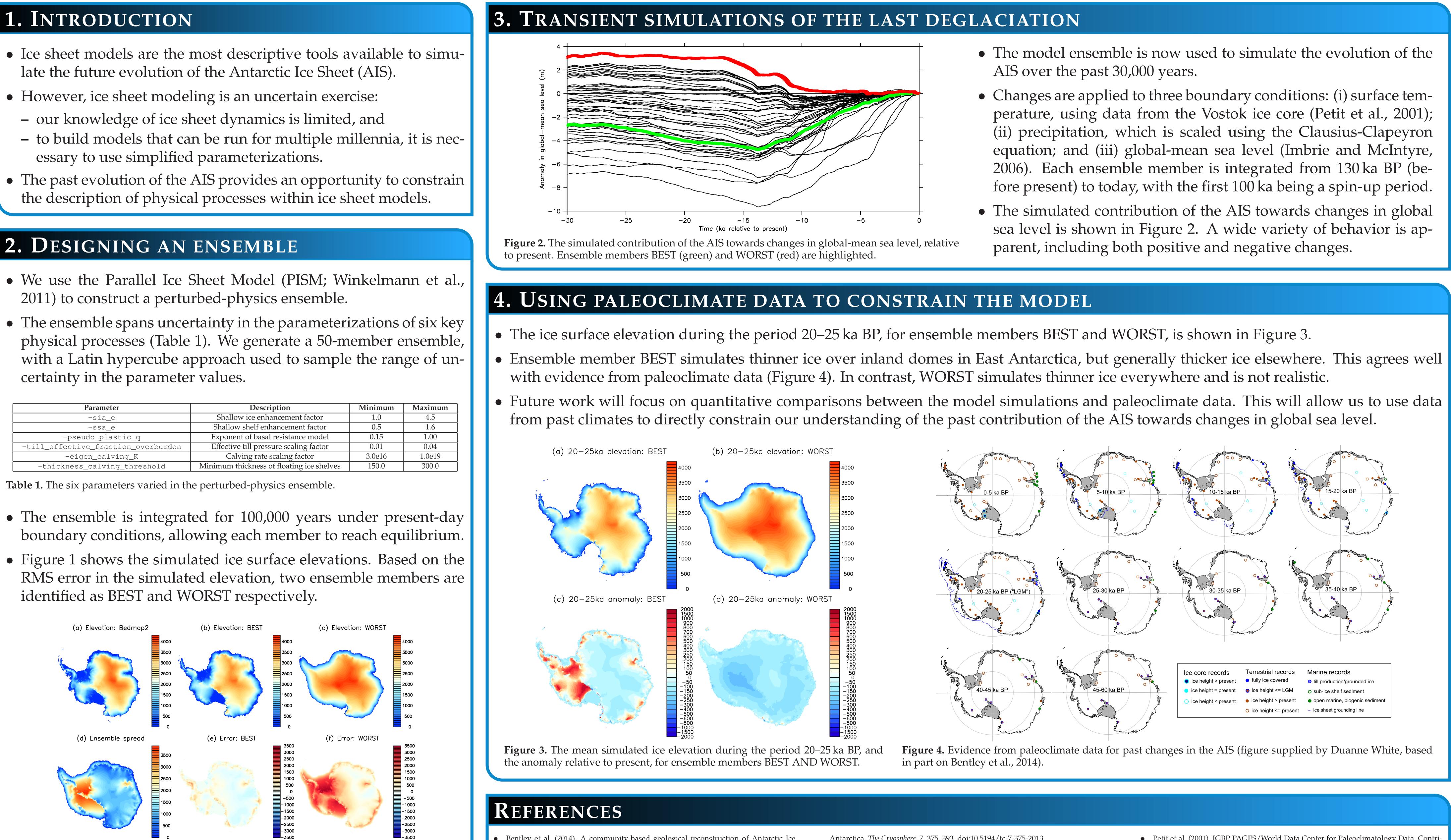
## Steven J. Phipps<sup>1,\*</sup>, Matt A. King<sup>2</sup>, Jason L. Roberts<sup>3,4</sup> and Duanne A. White<sup>5</sup>

<sup>1</sup>Institute for Marine and Antarctic Studies, University of Tasmania, Australia. <sup>2</sup>School of Land and Food, University of Tasmania, Hobart, Tasmania, Australia. <sup>3</sup>Australian Antarctic Division, Kingston, Tasmania, Australia. <sup>4</sup>Antarctic Climate & Ecosystems Cooperative Research Centre, University of Tasmania, Hobart, Tasmania, Australia. <sup>5</sup>University of Canberra, Canberra, Australia. \*Email: Steven.Phipps@utas.edu.au

### **1. INTRODUCTION**

- However, ice sheet modeling is an uncertain exercise:

  - essary to use simplified parameterizations.


### 2. DESIGNING AN ENSEMBLE

- 2011) to construct a perturbed-physics ensemble.
- certainty in the parameter values.

| Parameter                           | Description                               | Minim |
|-------------------------------------|-------------------------------------------|-------|
| -sia_e                              | Shallow ice enhancement factor            | 1.0   |
| -ssa_e                              | Shallow shelf enhancement factor          | 0.5   |
| -pseudo_plastic_q                   | Exponent of basal resistance model        | 0.15  |
| -till_effective_fraction_overburden | Effective till pressure scaling factor    | 0.01  |
| -eigen_calving_K                    | Calving rate scaling factor               | 3.0e1 |
| -thickness_calving_threshold        | Minimum thickness of floating ice shelves | 150.  |

**Table 1.** The six parameters varied in the perturbed-physics ensemble.

- identified as BEST and WORST respectively.



**Figure 1.** Simulated and observed ice surface elevation: (a) Bedmap2 (Fretwell et al., 2013), (b)–(c) members BEST and WORST, (d) the ensemble spread, and (e)–(f) the error for BEST and WORST.

- Bentley et al. (2014), A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum, Quaternary Science Reviews, 100, 1–9, doi:10.1016/j.quascirev.2014.06.025.
- Fretwell et al. (2013), Bedmap2: improved ice bed, surface and thickness datasets for

Antarctica, The Cryosphere, 7, 375–393, doi:10.5194/tc-7-375-2013. Imbrie and McIntyre (2006): SPECMAP time scale developed by Imbrie et al., 1984 based on normalized planktonic records (normalized O-18 vs time, specmap.017), doi:10.1594/PANGAEA.441706.

Model description, *The Cryosphere*, 5, 715–726, doi:10.5194/tc-5-715-2011.



A Special Research Initiative of the Australian Research Council

• Petit et al. (2001), IGBP PAGES/World Data Center for Paleoclimatology Data, Contribution Series #2001-076. • Winkelmann et al. (2011), The Potsdam Parallel Ice Sheet Model (PISM-PIK) – Part 1: