The role of climate modelling in the study of the last 2000 years

Steven J. Phipps
ARC Centre of Excellence for Climate System Science
Climate Change Research Centre
University of New South Wales, Sydney, Australia

ACCSP–3rd PAGES Aus2k Workshop
26–27 June 2014
1. Context
2. The role of climate modelling
3. Current limitations
4. Future challenges

Steven J. Phipps, ARC CoE for Climate System Science and Climate Change Research Centre, UNSW, Sydney, Australia

The role of climate modelling in the study of the last 2000 years
Context: The climate of the last 2000 years

Figure 2 | Continental-scale temperature reconstructions. 30-year-mean temperatures for the seven PAGES 2k Network regions, standardized to have the same mean (0) and standard deviation (1) over the period of overlap among records (AD 1190–1970). North America includes a shorter tree-ring-based and a longer pollen-based reconstruction. Dashed outlines enclose intervals of pronounced volcanic and solar negative forcing since AD 850 (see Methods). The lower panel shows the running count of number of individual proxy records by region. Data are listed in Supplementary Database S2.
The “handshake” question

How do we integrate data from natural archives with climate models in a way that extracts the maximum possible information about the dynamics of the climate system?
The inverse approach

- Translate proxy variables into physical climate variables.
- Achieved by calibrating proxy variables against local or remote climatic variables, typically using observational data.
- Involves the necessary but usually implicit assumption of stationarity.
- Proxies can integrate multiple environmental variables, so information is lost when only reconstructing a single variable.
The forward approach

- Translate model variables into proxy variables.
- Achieved by using physical and biological principles to simulate the evolution of proxy variables within a modelling framework.
- Capable of avoiding the assumption of stationarity.
- Can account for the fact that proxies integrate multiple variables.
- Require a complete description of all the relevant processes.
The role of climate modelling

Through the comparison of model simulations with proxy data and climate reconstructions spanning the last 2000 years, we can...

- study the relative roles of forced versus internal variability within the climate system
- determine the characteristics of natural internal climate variability
- derive estimates of the transient climate sensitivity
- test dynamical hypotheses
- evaluate the models that are used to project future climate change
Forced versus internal variability

Fernández-Donado et al. (2013)
Forced versus internal variability

Schurer et al. (2013)
Characteristics of natural internal climate variability

Schurer et al. (2013)

Steven J. Phipps, ARC CoE for Climate System Science and Climate Change Research Centre, UNSW, Sydney, Australia

The role of climate modelling in the study of the last 2000 years
Estimates of the transient climate sensitivity

Fernández-Donado et al. (2013)
Test dynamical hypotheses: ENSO

Cobb et al. (2003)

Steven J. Phipps, ARC CoE for Climate System Science and Climate Change Research Centre, UNSW, Sydney, Australia

The role of climate modelling in the study of the last 2000 years
Test dynamical hypotheses: ENSO

Phipps et al. (2013)

Steven J. Phipps, ARC CoE for Climate System Science and Climate Change Research Centre, UNSW, Sydney, Australia

The role of climate modelling in the study of the last 2000 years
Evaluate the models used to project future climate change

Fernández-Donado et al. (2013)
Current limitations on our ability to learn everything that we can from the climate of the last 2000 years include...

- uncertainties in our knowledge of past external forcings, particularly the sun and volcanoes
- uncertainties inherent in climate reconstructions
- deficiencies in model physics

Internal climate variability can also hamper efforts to compare model simulations with reconstructions.
Uncertainty in external forcings: the sun and volcanoes

Phipps (in prep.)

Steven J. Phipps, ARC CoE for Climate System Science and Climate Change Research Centre, UNSW, Sydney, Australia

The role of climate modelling in the study of the last 2000 years
Uncertainty in external forcings: the sun and volcanoes

Phipps (in prep.)

Steven J. Phipps, ARC CoE for Climate System Science and Climate Change Research Centre, UNSW, Sydney, Australia

The role of climate modelling in the study of the last 2000 years
Deficiencies in model physics

IPCC Fifth Assessment Report
Internal climate variability

Fernández-Donado et al. (2013)
Future challenges

If we want to learn everything that we can from the climate of the last 2000 years, then future challenges are to...

- develop better reconstructions of past climatic forcings
- use climate modelling to test the assumptions that underlie techniques for climate reconstruction
- continue the development of techniques that allow for more complete integration of climate modelling with proxy data, particularly forward modelling and data assimilation

References