Multi-millennial simulations of the climate of the late Holocene

Steven J. Phipps1,2,3
Jason L. Roberts1,2
Nathan L. Bindoff1,2,3,4

1Antarctic Climate and Ecosystems CRC, University of Tasmania, Australia
2Tasmanian Partnership for Advanced Computing, University of Tasmania, Australia
3Institute of Antarctic and Southern Ocean Studies, University of Tasmania, Australia
4CSIRO Marine and Atmospheric Research, Australia
Acknowledgements

- ACE CRC Earth Systems Modelling Travel Fellowship
- Bill Budd, University of Tasmania
- Scott Power, Bureau of Meteorology Research Centre
- Tas van Ommen, Australian Antarctic Division
- CSIRO Marine and Atmospheric Research

EGUGenral Assembly, Vienna, Austria, 2-7 April 2006
The CSIRO Mk3L climate system model

- Low-resolution version of the CSIRO Mk3 climate system model
- Atmosphere:
 - Spectral general circulation model
 - Resolution is R21 18L ($\Delta \lambda \approx 5.6^\circ, \Delta \phi \approx 3.2^\circ$)
 - Dynamic-thermodynamic sea ice model
 - Land surface model (static vegetation)
- Ocean:
 - z-coordinate general circulation model
 - Resolution is R21 21L (same horizontal grid as atmosphere model)
 - Gent-McWilliams eddy diffusion
- Flux adjustments applied
- \sim5 model years/day (3GHz Pentium 4)
The pre-industrial climate

- Control simulation follows PMIP2 experimental design:
 - CO$_2$ concentration = 280 ppm
 - Solar constant = 1365 Wm$^{-2}$
 - “Modern” orbital parameters (AD 1950)
- Integrated for 2000+ years
Multi-millennial simulations of the climate of the late Holocene
EGU General Assembly, Vienna, Austria, 2-7 April 2006
Multi-millennial simulations of the climate of the late Holocene
EGU General Assembly, Vienna, Austria, 2-7 April 2006

NADW formation: power spectrum
EOF1 of annual-mean sea surface temperature (°C) – 22.3%
El Niño: model versus observed

<table>
<thead>
<tr>
<th></th>
<th>Mk3L</th>
<th>Observed*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard deviation of Niño 3.4 SST anomaly (°C)</td>
<td>0.48</td>
<td>0.71</td>
</tr>
<tr>
<td>Average period (years)</td>
<td>7.8 ± 0.5</td>
<td>~3–6</td>
</tr>
<tr>
<td>Average duration (months)</td>
<td>17.2 ± 0.6</td>
<td>~12</td>
</tr>
</tbody>
</table>

Multi-millennial simulations of the climate of the late Holocene
EGU General Assembly, Vienna, Austria, 2-7 April 2006
The climate of the mid-Holocene

- Equilibrium simulation conducted for 6ka BP
- PMIP2 experiment
- Orbital parameters for 6ka BP
- Atmospheric CO$_2$ concentration reduced from 280ppm to 277ppm
 - equivalent to a reduction in the atmospheric CH$_4$ concentration from 760ppb to 650ppb
- Initialised from year 100 of control simulation
- Integrated for 1200+ years
Multi-millennial simulations of the climate of the late Holocene
EGU General Assembly, Vienna, Austria, 2-7 April 2006

Difference in August surface air temperature (°C)
El Niño: control versus 6ka BP

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>6ka BP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard deviation of Niño 3.4 SST anomaly (°C)</td>
<td>0.48</td>
<td>0.42</td>
</tr>
<tr>
<td>Period (years)</td>
<td>7.8 ± 0.5</td>
<td>8.8 ± 0.9</td>
</tr>
<tr>
<td>Duration (months)</td>
<td>17.2 ± 0.6</td>
<td>16.6 ± 1.0</td>
</tr>
</tbody>
</table>
The climate of the late Holocene

- Transient simulations from 6ka BP to the present day
- Initialised from year 1000 of the mid-Holocene simulation
- Orbital parameters varied, using the acceleration technique of Lorenz and Lohmann (2004)*
- Acceleration factors of 1, 5, 10 and 20
- Other boundary conditions unchanged

Multi-millennial simulations of the climate of the late Holocene
EGU General Assembly, Vienna, Austria, 2-7 April 2006
Multi-millennial simulations of the climate of the late Holocene
EGU General Assembly, Vienna, Austria, 2-7 April 2006

Difference in annual precipitation over North Africa (mm)
Multi-millennial simulations of the climate of the late Holocene
EGU General Assembly, Vienna, Austria, 2-7 April 2006
Multi-millennial simulations of the climate of the late Holocene
EGU General Assembly, Vienna, Austria, 2-7 April 2006
Conclusions

- The CSIRO Mk3L climate system model is a useful tool for studying past, present and future climate variability and change.
- Lorenz-Lohmann acceleration enables orbital effects on very long timescales to be studied.
- Simulations suggest a gradual strengthening of ENSO during the late Holocene.