8,000 years of El Niño: Towards data-model integration

Steven J. Phipps1

Helen V. McGregor2

1Climate Change Research Centre, University of New South Wales, Australia

2School of Earth and Environmental Sciences, University of Wollongong, Australia
ENSO has changed over the Holocene...

- ENSO variability has increased over the past 8,000 years
- El Niño events have increased in frequency and magnitude
- Evidence of a peak in ENSO variability at 2–1 ka BP
- Strong variability on centennial and millennial timescales
- These changes provide an opportunity to learn more about ENSO dynamics

Moy et al. (2002), *Nature*
Microatolls from Kiritimati Island

El Niño year

Coral δ18O

IGOSS SST

Year
The CSIRO Mk3L climate system model

- Low-resolution coupled general circulation model:
 - Atmosphere: 5.6° × 3.2°, 18 vertical levels
 - Ocean: 2.8° × 1.6°, 21 vertical levels
 - Sea ice: Dynamic-thermodynamic
 - Land surface: Static vegetation

- One 10,000-year pre-industrial control simulation

- Three transient simulations of the past 8,000 years

Pre-industrial control simulation: PC1 of monthly SST anomalies
Simulated changes in ENSO variability

Amplitude of SST variability in Nino 3.4 region (ENSO band)
Changes in ENSO variability: model-data comparison

Amplitude of SST variability in Nino 3.4 region (ENSO band)
Variability as a function of sampling period in the model

Amplitude of SST variability in Nino 3.4 region

500 years
Variability as a function of sampling period in the model

Amplitude of SST variability in Nino 3.4 region
Variability as a function of sampling period in the model

Amplitude of SST variability in Nino 3.4 region
Variability as a function of sampling period in the model

Amplitude of SST variability in Nino 3.4 region
Variability as a function of sampling period in the model

Amplitude of SST variability in Nino 3.4 region
Integrating the data and the models

- Data-model integration is a two-way process
- The data constrains the model simulations
- The models provide the dynamical interpretation of the data
Northern Hemisphere summers were warmer at 8 ka BP ...
... which enhanced the Asian summer monsoon system ...
... and made it harder for El Niño events to develop
Conclusions

• Past changes in El Niño-Southern Oscillation provide an opportunity to learn more about ENSO dynamics. However, to realise this opportunity, we need to integrate the data and the models.

• Low-frequency ENSO variability represents a challenge for data-model integration. Ideally, the sampling period for both the data and models should be at least 200 years.

• A climate system model is able to reproduce the long-term upward trend in ENSO variability over the past 8,000 years. The model suggests that this trend is driven by increasing summer insolation over the Asian landmass.

References

