Natural archives, computer models and the role of climate drivers over the past 1500 years

Steven J. Phipps
ARC Centre of Excellence for Climate System Science
Climate Change Research Centre
University of New South Wales

University of Sydney Geocoastal Seminar
5 September 2013
1. Sources of information on past climates

2. The climate of the past 1500 years

3. The “handshake”

4. The drivers of hemispheric-scale temperature

5. The climate of the central Pacific

6. Conclusions

Steven J. Phipps, ARC Centre of Excellence for Climate System Science and Climate Change Research Centre, UNSW
Sources of information on past climates
What we really want...

Steven J. Phipps, ARC Centre of Excellence for Climate System Science and Climate Change Research Centre, UNSW
Natural archives, computer models and the role of climate drivers over the past 1500 years
Tree rings

- Tree rings provide information about changes in temperature and precipitation over the past tens to thousands of years.
- Annual resolution; precise dating possible.
- Widely distributed throughout mid-latitudes.

Tree rings provide information about changes in temperature and precipitation over the past tens to thousands of years. Annual resolution; precise dating possible. Widely distributed throughout mid-latitudes.
Ice cores

- Annual snowfalls deposit continuous sequences of ice.
- Provide information about climate drivers (e.g. greenhouse gases) as well as information about past changes in the climate (e.g. temperature).
Coral reefs

- Corals in tropical and subtropical oceans form annual bands of calcite (CaCO$_3$) that record information about the climate.
- Individual corals can live for hundreds of years.
- Very high (e.g. monthly) resolution possible.
Coral $\delta^{18}O$ versus local sea surface temperature

Steven J. Phipps, ARC Centre of Excellence for Climate System Science and Climate Change Research Centre, UNSW

Natural archives, computer models and the role of climate drivers over the past 1500 years
Even wine can provide valuable information!

Grape ripening as a past climate indicator

French records of grape-harvest dates in Burgundy were used to reconstruct spring-summer temperatures from 1370 to 2003 using a process-based phenology model developed for the Pinot Noir grape. Our results reveal that temperatures as high as those reached in the 1990s have occurred several times in Burgundy since 1370. However, the summer of 2003 appears to have been extraordinary, with temperatures that were probably higher than in any other year since 1370.

Biological and documentary proxy records have been widely used to reconstruct temperature variations to assess the exceptional character of recent climate fluctuations. Grape-harvest dates, which are tightly related to temperature, have been recorded locally for centuries in many European countries. These dates may therefore provide one of the longest uninterrupted series of regional temperature anomalies (highs and lows) without chronological uncertainties.

In Burgundy, these officially decreed dates have been carefully registered in parish and municipal archives since at least the early thirteenth century. We used a corrected and updated harvest-date series from Burgundy, covering the years from 1370 to 2003, to reconstruct spring-summer temperature anomalies that had occurred in eastern France. To convert historical observations into temperature anomalies, we used a process-based phenology model for Pinot Noir, the main variety of grape that has been continuously grown in Burgundy since at least the fourteenth century (for details, see supplementary information).

Our yearly reconstruction is significantly correlated (Table 1) with summer temperatures deduced from tree rings in central France (correlation coefficient, \(r = 0.53 \)), the Burgundy part of a spatial multi-proxy reconstructions that extend to 1500 years ago.

A fifteenth-century depiction of the grape harvest from "Les Trés Riches Heures du Duc de Berry", a medieval book of hours.

Steven J. Phipps, ARC Centre of Excellence for Climate System Science and Climate Change Research Centre, UNSW
Natural archives, computer models and the role of climate drivers over the past 1500 years
Climate modelling

Permian-Triassic
(250 million years ago)

Paleocene-Eocene Thermal Maximum
(55 million years ago)

Last Glacial Maximum
(21 thousand years ago)

Little Ice Age
(500 years ago)

Surface Air Temperature
°F
°C
The climate of the past 1500 years
The climate of the past 1500 years

Fernández-Donado et al. (2013), *Climate of the Past*
The Mediaeval Warm Period (∼950–1250 CE)
The Little Ice Age (∼1400–1700 CE)
A regional perspective on the past 2000 years

Figure 1 | The PAGES 2k Network. Boxes show the continental-scale regions used in this study. The pie charts represent the fraction of proxy data types used for each regional reconstruction. Supplementary Database S1 includes information about each study site and the proxy data for all time series used in the regional reconstructions.

PAGES 2k Consortium (2013), Nature Geoscience
A regional perspective on the past 2000 years

Figure 2 | Continental-scale temperature reconstructions. 30-year-mean temperatures for the seven PAGES 2k Network regions, standardized to have the same mean (0) and standard deviation (1) over the period of overlap among records (AD 1190–1970). North America includes a shorter tree-ring-based and a longer pollen-based reconstruction. Dashed outlines enclose intervals of pronounced volcanic and solar negative forcing since AD 850 (see Methods). The lower panel shows the running count of number of individual proxy records by region. Data are listed in Supplementary Database S2.

PAGES 2k Consortium (2013), *Nature Geoscience*
External drivers: the Earth’s orbital cycle
External drivers: anthropogenic greenhouse gases

Atmospheric Carbon Dioxide
Measured at Mauna Loa, Hawaii
External drivers: solar irradiance
External drivers: the sun and volcanoes

Total solar irradiance

Radiative forcing due to volcanoes (Gao et al, 2008)

Radiative forcing due to volcanoes (Crowley et al, 2008)
The “handshake”
Sources of information on past climates

\[\delta^{18}O \]
\[\text{Sr/Ca} \]
\[\text{Temperature} \]
\[\text{Precipitation} \]
The “handshake” question

How do we integrate data from natural archives with climate models in a way that extracts the maximum possible information about the dynamics of the climate system?
Translate proxy variables into physical climate variables.

Achieved by calibrating proxy variables against local or remote climatic variables, typically using observational data.

Involves the necessary but usually implicit assumption of stationarity.

Proxies can integrate multiple environmental variables, so information is lost when only reconstructing a single variable.
The forward approach

- Translate model variables into proxy variables.
- Achieved by using physical and biological principles to simulate the evolution of proxy variables within a modelling framework.
- Capable of avoiding the assumption of stationarity.
- Can account for the fact that proxies integrate multiple variables.
- Require a complete description of all the relevant processes.
The drivers of hemispheric-scale temperature
Temperature reconstructions

- Hemispheric-mean temperature reconstructions (Mann et al., 2008)
- Global network of 1209 annually- and decadally-resolved proxies
- Decadal temperature for 300–2006 CE (NH) and 400–2006 CE (SH)
Climate model simulations

- The CSIRO Mk3L climate system model (Phipps et al., 2011, 2012)
 - Atmospheric general circulation model \((5.6^\circ \times 3.2^\circ, 18\) levels\)
 - Ocean general circulation model \((2.8^\circ \times 1.6^\circ, 21\) levels\)
 - Dynamic-thermodynamic sea ice model
 - Land surface scheme

- 10,000-year pre-industrial control simulation

- Multiple transient simulations using three-member ensembles:

<table>
<thead>
<tr>
<th>Ensemble</th>
<th>Years (CE)</th>
<th>Forcing(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>1–2000</td>
<td>Orbital (Berger, 1978)</td>
</tr>
<tr>
<td>OG</td>
<td>1–2000</td>
<td>O + GHGs (MacFarling Meure et al., 2006)</td>
</tr>
<tr>
<td>OGS</td>
<td>1–2000</td>
<td>OG + solar irradiance (Steinhilber et al., 2009)</td>
</tr>
<tr>
<td>OGSV</td>
<td>501–2000</td>
<td>OGS + volcanic aerosols (Gao et al., 2008)</td>
</tr>
</tbody>
</table>

Steven J. Phipps, ARC Centre of Excellence for Climate System Science and Climate Change Research Centre, UNSW

Natural archives, computer models and the role of climate drivers over the past 1500 years
Simulated annual-mean temperature

(a) Northern Hemisphere

(b) Southern Hemisphere

O: $r=+0.26$

O: $r=+0.29$

Year CE
Simulated annual-mean temperature

(a) Northern Hemisphere

(b) Southern Hemisphere

Steven J. Phipps, ARC Centre of Excellence for Climate System Science and Climate Change Research Centre, UNSW

Natural archives, computer models and the role of climate drivers over the past 1500 years
Simulated annual-mean temperature

(a) Northern Hemisphere

(b) Southern Hemisphere

Simulated annual-mean temperature

Steven J. Phipps, ARC Centre of Excellence for Climate System Science and Climate Change Research Centre, UNSW

Natural archives, computer models and the role of climate drivers over the past 1500 years
Simulated annual-mean temperature

(a) Northern Hemisphere

(b) Southern Hemisphere

Steven J. Phipps, ARC Centre of Excellence for Climate System Science and Climate Change Research Centre, UNSW
Natural archives, computer models and the role of climate drivers over the past 1500 years
RMS errors in model simulations (501–2000 CE)

(a) Northern Hemisphere

(b) Southern Hemisphere

Steven J. Phipps, ARC Centre of Excellence for Climate System Science and Climate Change Research Centre, UNSW
Natural archives, computer models and the role of climate drivers over the past 1500 years
RMS errors in model simulations (1851–2000 CE)

(a) Northern Hemisphere

(b) Southern Hemisphere

Steven J. Phipps, ARC Centre of Excellence for Climate System Science and Climate Change Research Centre, UNSW

Natural archives, computer models and the role of climate drivers over the past 1500 years
The climate of the central Pacific

Steven J. Phipps, ARC Centre of Excellence for Climate System Science and Climate Change Research Centre, UNSW
Natural archives, computer models and the role of climate drivers over the past 1500 years
Coral from Palmyra Island

Cobb et al. (2003), *Nature*
Coral from Palmyra Island

Cobb et al. (2003), *Nature*
Deriving a pseudocoral

- Corals provide a single chemical variable: $\delta^{18}O$.
- The climate model simulates physical variables: SST, SSS, P, E...
- These variables are not directly comparable.
- The solution is to construct a “pseudocoral” (Brown et al., 2008).
- Using the pre-industrial control simulation, we regress a set of potential predictors (SST, SSS, P, E) onto the simulated Niño 3.4 SST anomaly.
- We obtain the following pseudocoral:

$$
C = 0.692 \Delta SST - 0.708 \Delta SSS + 0.023 \Delta P + 0.248 \Delta E
$$

(±0.015) (±0.056) (±0.002) (±0.013)

- This indicator describes 70% of the simulated ENSO variance.
Reconstructed and simulated mean state

(a) Coral

(b) Pre-industrial control
Reconstructed and simulated mean state

(c) Member 1

(d) Member 2

(e) Member 3

Steven J. Phipps, ARC Centre of Excellence for Climate System Science and Climate Change Research Centre, UNSW

Natural archives, computer models and the role of climate drivers over the past 1500 years
Mean state versus individual forcings

<table>
<thead>
<tr>
<th>Ensemble member</th>
<th>Greenhouse gases</th>
<th>Solar irradiance</th>
<th>Volcanic eruptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Annual mean</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>+0.31</td>
<td>+0.11</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>+0.28</td>
<td>+0.17</td>
<td>+0.04</td>
</tr>
<tr>
<td>3</td>
<td>+0.31</td>
<td>+0.19</td>
<td>+0.05</td>
</tr>
<tr>
<td>Mean</td>
<td>+0.47</td>
<td>+0.25</td>
<td>+0.04</td>
</tr>
<tr>
<td>(b) Decadal mean</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>+0.59</td>
<td>+0.22</td>
<td>+0.12</td>
</tr>
<tr>
<td>2</td>
<td>+0.50</td>
<td>+0.29</td>
<td>+0.33</td>
</tr>
<tr>
<td>3</td>
<td>+0.59</td>
<td>+0.35</td>
<td>+0.23</td>
</tr>
<tr>
<td>Mean</td>
<td>+0.71</td>
<td>+0.37</td>
<td>+0.29</td>
</tr>
</tbody>
</table>

Steven J. Phipps, ARC Centre of Excellence for Climate System Science and Climate Change Research Centre, UNSW

Natural archives, computer models and the role of climate drivers over the past 1500 years
Possible dynamical mechanisms

- The ocean dynamical thermostat (Clement et al. 1996):
 - Warming in the tropics causes enhanced upwelling in the eastern Pacific.
 - This increases the magnitude of the zonal sea surface temperature (SST) gradient.
 - Predicts a positive relationship between the SST gradient and radiative forcing.

Steven J. Phipps, ARC Centre of Excellence for Climate System Science and Climate Change Research Centre, UNSW
Natural archives, computer models and the role of climate drivers over the past 1500 years
Possible dynamical mechanisms

- The “Weaker Walker” mechanism (Held and Soden 2006):
 - Global-scale warming causes a weakening of the Walker Circulation.
 - Manifested in a reduction in the zonal sea level pressure (SLP) gradient across the equatorial Pacific.
 - Predicts a negative relationship between the SLP gradient and radiative forcing.
Testing possible dynamical mechanisms

(a) Greenhouse gases

(b) Solar irradiance

(c) Volcanic eruptions

(r = +0.17)

(r = +0.06)

(d) Greenhouse gases

(e) Solar irradiance

(f) Volcanic eruptions

(r = +0.03)

Steven J. Phipps, ARC Centre of Excellence for Climate System Science and Climate Change Research Centre, UNSW

Natural archives, computer models and the role of climate drivers over the past 1500 years
Reconstructed and simulated ENSO amplitude

(a) Coral

(b) Pre–industrial control
Reconstructed and simulated ENSO amplitude

(c) Orbital–Greenhouse–Solar–Volcanic

Relative standard deviation

Year CE

Kuwee

1258

Tambora

900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Steven J. Phipps, ARC Centre of Excellence for Climate System Science and Climate Change Research Centre, UNSW

Natural archives, computer models and the role of climate drivers over the past 1500 years
ENSO amplitude versus individual forcings

<table>
<thead>
<tr>
<th>Ensemble member</th>
<th>Greenhouse gases</th>
<th>Solar irradiance</th>
<th>Volcanic eruptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+0.02</td>
<td>-0.24</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>+0.14</td>
<td>+0.27</td>
<td>+0.10</td>
</tr>
<tr>
<td>3</td>
<td>+0.32</td>
<td>-0.09</td>
<td>+0.03</td>
</tr>
<tr>
<td>Mean</td>
<td>+0.30</td>
<td>-0.04</td>
<td>+0.09</td>
</tr>
</tbody>
</table>

Steven J. Phipps, ARC Centre of Excellence for Climate System Science and Climate Change Research Centre, UNSW

Natural archives, computer models and the role of climate drivers over the past 1500 years
Conclusions
Conclusions

- By comparing a suite of climate model simulations with multiple records from natural archives, we have been able to study the drivers of the global climate over the past 1500 years.
- We find evidence of solar and volcanic influences on temperature, particularly in the Southern Hemisphere. However, after 1850 CE, anthropogenic greenhouse gases become increasingly dominant.
- We also find evidence of solar, volcanic and anthropogenic influences on the mean state of the central Pacific.
- However, we find no evidence of any natural or anthropogenic influences on ENSO. This supports the notion that ENSO variability arises from within the internal dynamics of the ENSO system itself.