Evolution of the Southern Hemisphere westerly winds over the past 8 ka: a data-model perspective

Steven J. Phipps Climate Change Research Centre ARC Centre of Excellence for Climate System Science University of New South Wales, Sydney, Australia

> SHAPE Westerly Winds Workshop 28–29 January 2014



- 2 Climate model simulations
- 3 Simulations of the past 8,000 years
- 4 Evolution of SAM
- 5 Conclusions

# Introduction

#### The "handshake" question



How do we integrate proxy data and climate models in a way that extracts the maximum possible information about the dynamics of the climate system?

#### The "handshake" question



- Data-model integration is a two-way process
- Proxy data can be used to constrain climate model simulations
- Climate models can provide dynamical interpretation of proxy data
- Everyone wins: we learn more about the dynamics of the climate system than when we employ the two approaches separately

#### onclusions

# **Climate model simulations**

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

### PMIP3 transient climate model simulations



Bakker et al. (in revision), Quaternary Science Reviews

# The CSIRO Mk3L climate system model

• The CSIRO Mk3L climate system model (Phipps et al., 2011, 2012)

- Atmospheric general circulation model ( $5.6^{\circ} \times 3.2^{\circ}$ , 18 levels)
- Ocean general circulation model ( $2.8^{\circ} \times 1.6^{\circ}$ , 21 levels)
- Dynamic-thermodynamic sea ice model
- Land surface scheme



### Drivers of New Zealand South Island precipitation

- 10,000-year pre-industrial control simulation
- Composite mean sea level pressure and surface wind stress for years when New Zealand South Island precipitation is more than one standard deviation above or below the long-term mean



### The role of orbital forcing over the past 8,000 years

- Three transient simulations of the past 8,000 years:
  - Only the Earth's orbital geometry is varied (Berger et al., 1978)
  - Each ensemble member is initialised from different years of the control simulation (i.e. a perturbed initial conditions ensemble)



## The role of external forcings over the past 1500 years

- Multiple ensembles of transient simulations of the past 1500 years:
  - Orbital changes (Berger, 1978)
  - Anthropogenic greenhouse gases (MacFarling Meure et al., 2006)
  - Solar irradiance (Steinhilber et al., 2009)
  - Explosive volcanism (Gao et al., 2008)



# Simulations of the past 8,000 years

## PMIP3: trend in zonal wind speed (m s<sup>-1</sup> ka<sup>-1</sup>)



Bakker et al. (in revision), Quaternary Science Reviews

## PMIP3: trend in surface air temperature (K ka $^{-1}$ )



Bakker et al. (in revision), Quaternary Science Reviews

#### Mk3L: Trend in MSLP (hPa ka<sup>-1</sup>) and surface wind stress



#### Mk3L: Trend in precip (mm $ka^{-1}$ ) and surface wind stress



# **Evolution of SAM**

#### Temperature proxies and correlation with SAM



Abram et al. (in review), Nature Climate Change

#### Reconstruction of SAM over the last millennium



Abram et al. (in review), Nature Climate Change

#### Data-model comparison and role of external forcings



SHAPE Westerly Winds Workshop, 28–29 January 2014: Evolution of the Southern Hemisphere westerly winds over the past 8 ka

#### Conclusions

# Conclusions

# Conclusions

- By integrating proxy data with climate modelling, we can use past climatic changes to study the dynamics of the climate system.
- Orbital changes can explain long-term trends in the SH westerlies over the past 8 ka, with a shift towards a more +ve phase of SAM.
- On shorter timescales, internal variability dominates. GHGs can explain the late 20th Century shift towards a more positive SAM. However, solar/volcanic forcings do not appear to have an influence.
- Opportunities:
  - SAM reconstruction spanning the past 8,000 years
  - Detection/attribution of internal variability/external forcings
- Challenges:
  - Proxy availability/selection
  - Temporal resolution: annual/decadal/centennial?