Multi-millennial simulations of the climate of the late Holocene

Steven J. Phipps

ARC Network for Earth System Sciences Tasmanian Partnership for Advanced Computing

TPAC

Overview

- The CSIRO Mk3L climate system model
- The climate of the present day
- The climate of the mid-Holocene
- The climate of the late Holocene

1. The CSIRO Mk3L climate system model

- Low-resolution version of the CSIRO climate system model
- Coupled atmosphere-sea ice-ocean general circulation model
- Designed to enable millennial-scale simulations of climate variability and change
 - palaeoclimate reconstructions
 - projections of future climate
 - sensitivity experiments

Atmosphere model

- Based on the CSIRO Mk3 atmosphere model
- Spectral general circulation model
- Reduced horizontal resolution of R21 ($\Delta \lambda \approx 5.6^{\circ}, \Delta \phi \approx 3.2^{\circ}$)
- 18 vertical levels
- Orbital parameter code
- Dynamic-thermodynamic sea ice model
- Land surface model (static vegetation)

Ocean model

- Based on the CSIRO Mk2 ocean model
- *z*-coordinate general circulation model
- Same horizontal grid as atmosphere model
- 21 vertical levels
- Gent-McWilliams eddy diffusion

Coupled model

- Surface fields exchanged every one hour (3 atmosphere model timesteps for each ocean model timestep)
- Coupling rigorously conserves heat and freshwater
- Flux adjustments applied

Source code

- Designed for maximum portability across computer architectures
- Should compile on any UNIX/Linux platform
- Shared-memory parallelism achieved using OpenMP
- Dependence on external libraries restricted to netCDF and FFTW
- Loop structure optimised for serial architectures

Benchmarks on APAC Facilities

Facility	Processor	Number of	Speed
	type	processors	(years/day)
SGI Altix AC	1.6GHz Itanium 2	1	6.2
		2	10.9
		4	16.0
Linux Cluster	2.66GHz Pentium 4	1	4.6

Coming soon...

- Double the horizontal resolution of the ocean model (giving $\Delta\lambda \approx 2.8^{\circ}, \Delta\phi \approx 1.6^{\circ}$)
- Incorporate new schemes (e.g. CABLE)
- Synchronise the model physics with Mk3
- Faster, easier to use
- What do *you* want?

2. The simulated "present-day" climate

- Control simulation follows PMIP2 experimental design:
 - CO₂ concentration = 280ppm
 - Solar constant $= 1365 \text{ Wm}^{-2}$
 - "Modern" orbital parameters (AD 1950)
- Ocean model initialised using Levitus 1998
- Atmosphere and ocean models spun up independently
- Coupled model initialised from final states of spin-up runs
- Integrated for 3100+ years

Nino 3.4 SST anomaly and Southern Oscillation Index

PC NESS TPAC

El Niño: model versus observed

	Mk3L	$Observed^*$
Standard deviation of	0.48	0.71
Niño 3.4 SST anomaly (°C)		
Average period (years)	7.6 ± 0.3	~ 3.2
Average duration (months)	17.0 ± 0.5	~ 12

*K. E. Trenberth. The definition of El Niño. The Bulletin of the American Meteorological Society, 78(12):2771–2777, 1997.

3. The climate of the mid-Holocene

- Equilibrium simulation conducted for the mid-Holocene (6ka BP)
- PMIP2 experiment
- Orbital parameters for 6ka BP
- Atmospheric CO_2 concentration reduced from 280ppm to 277ppm
 - equivalent to a reduction in the atmospheric CH_4 concentration from 760ppb to 650ppb
- Initialised from year 100 of control simulation
- Integrated for 1700+ years

TPAC

TPAC

TPAC

PC NESS TPAC

PEC NESS TPAC

El Niño: control versus 6ka BP

	Control	6ka BP
Standard deviation of	0.48	0.42
Niño 3.4 SST anomaly (°C)		1
Period (years)	7.6 ± 0.3	9.4 ± 0.6
Duration (months)	17.0 ± 0.5	16.7 ± 0.8

4. The climate of the late Holocene

- Transient simulations from 6,000 years BP to the present day
- Initialised from year 1000 of the mid-Holocene simulation
- Orbital parameters varied, using the acceleration technique of Lorenz and Lohmann (2004)*
- Acceleration factors of 1, 5, 10 and 20
- Other boundary conditions unchanged

*S. J. Lorenz and G. Lohmann. Acceleration technique for Milankovitch type forcing in a coupled atmosphere-ocean circulation model: method and application for the Holocene. *Climate Dynamics*, 23:727–743, 2004.

TPAC

TPAC

C NE SO TPAC

Conclusions

- Mk3L enables climate variability and change to be studied on millennial timescales
- The simulated present-day climate features an Atlantic Multidecadal Oscillation, but that of the mid-Holocene does not
- The simulated ENSO strengthens during the late Holocene
- Need to investigate the underlying mechanisms
- Lots of potential for future work!

