Proxies and processors: Integrating palaeoclimate archives with climate system models

Steven J. Phipps

Climate Change Research Centre University of New South Wales

Overview

- Data-model integration
- Example 1: El Niño over the past 8,000 years
- Example 2: Climate of the past 2,000 years
- Example 3: Regime classification
- Conclusions

Data-model integration

Palmyra Island: El Niño over the past millennium

Cobb et al. (2003), Nature

But what about the future?

Guilyardi et al. (2009), BAMS

Integrating the data and the models

- Data-model integration is a two-way process
- The data constrains the model simulations
- The models provide the dynamical interpretation of the data

Example 1: El Niño over the past 8,000 years

What is El Niño?

- El Niño–Southern Oscillation (ENSO) is the dominant mode of internal variability within the coupled atmosphereocean system
- Irregular period of $\sim 2-7$ years
- Average state of the system involves strong easterly trade winds pushing warm water to the east
- In an El Niño event, these winds slacken and the warm water flows eastwards
- Increased rainfall in the eastern Pacific, reduced rainfall in the west

El Niño has changed over the Holocene ...

Moy et al. (2002), Nature

- ENSO variability has increased over the past 8,000 years
- El Niño events have increased in frequency and magnitude
- Evidence of a peak in ENSO variability at 2–1 ka BP
- Strong variability on centennial and millennial timescales
- These changes provide an opportunity to learn more about ENSO dynamics

Data: the coral record

El Niño centres of action

Normal years

El Niño years

Severe El Niño events at ~ 2 ka?

McGregor and Gagan (2004), GRL

Extending the record: Microatolls from Kiritimati

Porites head coral

Porites microatoll

Modern coral δ^{18} O from Kiritimati calibrated against satellite sea surface temperature

McGregor et al. (in prep.), Geochimica et Cosmochimica Acta

The Holocene δ^{18} O record from Kiritimati

Woodroffe et al. (2003), GRL

Standard deviation of Kiritimati δ^{18} O: a measure of El Niño variability

Model: CSIRO Mk3L

- Low-resolution coupled general circulation model:
 - Atmosphere: $5.6^{\circ} \times 3.2^{\circ}$, 18 vertical levels
 - Ocean: $2.8^{\circ} \times 1.6^{\circ}$, 21 vertical levels
 - Sea ice: Dynamic-thermodynamic
 - Land surface: Static vegetation
- Three transient simulations of the past 8,000 years
- Orbital forcing only

Pre-industrial control simulation: PC1 of monthly SST anomalies

Simulated changes in El Niño variability

Phipps and McGregor (in prep.), GRL

El Niño variability: data-model comparison

Phipps and McGregor (in prep.), GRL

NH summers were warmer at 8 ka ...

June-July-August surface air temperature, 8 ka minus 0 ka BP (K)

Phipps and Brown (2010), IOP Conf. Series: Earth and Env. Sci.

... which enhanced the Asian summer monsoon ...

June-July-August mean sea level pressure, 8 ka minus 0 ka BP (hPa)

Phipps and Brown (2010), IOP Conf. Series: Earth and Env. Sci.

... and made it harder for El Niño events to develop

Phipps and Brown (2010), IOP Conf. Series: Earth and Env. Sci.

El Niño variability: data-model comparison

Phipps and McGregor (in prep.), GRL

Challenge: Low-frequency variability

Phipps and McGregor (in prep.), GRL

Example 2: Climate of the past 2,000 years

Last 2,000 years: Boundary conditions well known

MacFarling Meure et al. (2006), GRL

Last 2,000 years: Abundance of proxy data

Mann et al. (2008), PNAS

NH surface air temperature

Mann et al. (2008), PNAS

Radiative forcing: GHGs

Radiative forcing

Radiative forcing: GHGs+solar

Radiative forcing

Transient simulations of the past 2,000 years

- CSIRO Mk3L climate system model v1.2
- Forcings:
 - Changes in the Earth's orbital geometry
 - Changes in atmospheric CO₂, CH₄ and N₂O concentrations (MacFarling Meure et al., 2006)
 - Changes in solar irradiance (Steinhilber et al., 2009)
 - Volcanic aerosols (Gao et al., 2008)
- 3×3 transient simulations of the past 2,000 years:
 - Orbital + greenhouse gases
 - Orbital + greenhouse gases + solar
 - Orbital + greenhouse gases + solar + volcanic

NH surface air temperature: GHGs

NH surface air temperature

NH surface air temperature: GHGs+solar

NH surface air temperature: all forcings

SH surface air temperature: all forcings

Rainfall in SW Australia: all forcings

Rainfall in the Mallee: all forcings

El Niño: all forcings

Example 3: Regime classification

Kidson weather types

Ackerley et al. (in prep.), Clim. Past

DJF MSLP anomalies (6ka minus 0ka, hPa)

(a) CSIRO

(b) ECHO-G

Ackerley et al. (in prep.), Clim. Past

Mean SAT anomaly (6ka minus 0ka, °C)

Ackerley et al. (in prep.), Clim. Past

Conclusions

- The integration of palaeoclimate archives with climate models can provide new insights into the nature of the climate system.
- Proxy data can be used to constrain and evaluate the models, while the models provide a dynamical framework within which to understand past changes.
- However, data-model integration presents challenges e.g. metrics, baselines, low-frequency variability.
- Regime classification is a promising tool for data-model integration, and should be applied to the Australian region.