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Abstract. We present an assessment of the probabilistic and
climatological consistency of the CMIP5/PMIP3 ensemble
simulations for the last millennium relative to proxy-based
reconstructions under the paradigm of a statistically indis-
tinguishable ensemble. We evaluate whether simulations and
reconstructions are compatible realizations of the unknown
past climate evolution. A lack of consistency is diagnosed
in surface air temperature data for the Pacific, European and
North Atlantic regions. On the other hand, indications are
found that temperature signals partially agree in the west-
ern tropical Pacific, the subtropical North Pacific and the
South Atlantic. Deviations from consistency may change be-
tween sub-periods, and they may include pronounced op-
posite biases in different sub-periods. These distributional
inconsistencies originate mainly from differences in multi-
centennial to millennial trends. Since the data uncertainties
are only weakly constrained, the frequently too wide ensem-
ble distributions prevent the formal rejection of consistency
of the simulation ensemble. The presented multi-model en-
semble consistency assessment gives results very similar to a
previously discussed single-model ensemble suggesting that
structural and parametric uncertainties do not exceed forcing
and internal variability uncertainties.

1 Introduction

The fifth phase of the Coupled Model Intercomparison
Project (CMIP5,Taylor et al., 2012) incorporates, for the
first time, paleoclimate simulations in its suite of numeri-
cal experiments. The last 1000 yr of the pre-industrial pe-
riod are the most recent key period identified by the Paleocli-
mate Modelling Intercomparison Project Phase III (PMIP3,

Braconnot et al., 2012). In contrast to the traditional time-
slice simulations for specific periods of the past (e.g. Last
Glacial Maximum), the PMIP3 “past1000” experiments are
transient simulations covering 850 to 1850 AD with time-
varying estimates for external drivers, such as orbital, solar,
volcanic and land-use climate forcings (Schmidt et al., 2011).
The past1000 ensemble bridges a gap between the unper-
turbed control simulations and the historical simulations for
the last 150 yr. It provides simulated estimates of a climate
only slightly different from today. Since the ensemble allows
for detailed comparisons with climate reconstructions, it as-
sists in improving our understanding of past climate forcings
and naturally forced climate variability and, in turn, in finger-
printing anthropogenic climate change (Hegerl et al., 2007;
Sundberg, 2012; Schmidt et al., 2013). Assessing the quality
of our simulations against paleoclimate estimates provides
essential test beds for our climate models (e.g.Schmidt et al.,
2013).

Commonly, validation considers how accurately a simu-
lated data set agrees with the observational data in terms
of matching patterns (e.g.Taylor, 2001). Comparing simu-
lations with reconstructions implicitly interprets both as rep-
resentations of the same past. Based on this, their agreement
may be taken as validation of the model, and their disagree-
ment may highlight model deficiencies. However, we have
to take into account the considerable uncertainties in the re-
constructions. Thus, we propose that it is appropriate in the
past1000 context to assess the consistency of the simulations
applying methods from weather-forecast verification follow-
ing, for example,Annan and Hargreaves(2010) andMarzban
et al. (2011) prior to any subjective comparisons. There-
fore, we have to ask the following (e.g.Hargreaves et al.,
2011; Bothe et al., 2013): do simulations and reconstructions
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represent compatible realizations of the unknown past cli-
mate? Answering this question implies establishing within
confidence margins whether the data samples can be assumed
to stem from a common distribution whose shape is con-
strained by external perturbations and forcings to the climate
system. Such a consistency provides confidence that simu-
lations and reconstructions indeed describe the same prop-
erty and include comparable amounts of forced and inter-
nal variability. The paradigm of a statistically indistinguish-
able ensemble offers a theoretical basis to evaluate the con-
sistency of simulation ensembles with reconstructions. We
use this framework to assess the ensemble consistency of
the past1000 multi-model ensemble with the global temper-
ature field reconstruction byMann et al.(2009) and two re-
gional area-averaged temperature reconstructions for Central
Europe (Dobrovolný et al., 2010) and the North American
Southwest (Wahl and Smerdon, 2012). We also discuss re-
sults for a subset of Northern Hemisphere mean temperature
reconstructions recalibrated to selected time periods (Frank
et al., 2010). We interpret the past1000 ensemble in terms of
a probabilistic ensemble of realizations of climate variabil-
ity and test whether it reliably represents the reconstructed
distribution including the reconstruction uncertainty.

The current study extends our previous work (Bothe et al.,
2013), which tested the consistency of the PMIP3-compliant
ensemble of simulations for the last millennium performed
with the COSMOS version of the MPI Earth System Model
(MPI-ESM) developed at the Max Planck Institute for Me-
teorology (COSMOS-Mill ensemble,Jungclaus et al., 2010).
The ensemble spans a number of forcing and initial condi-
tions. We found that the COSMOS-Mill ensemble commonly
lacks consistency with a set of reconstructions for Northern
Hemisphere mean temperature and with the global temper-
ature field reconstruction byMann et al.(2009). However,
its representations of Central European annual mean temper-
ature are consistent with the reconstruction byDobrovolný
et al.(2010).

The PMIP3-past1000 multi-model ensemble allows con-
sideration of the consistency of our paleoclimate simula-
tions with reconstructions not only with initial and forcing
condition uncertainties (like for the COSMOS-Mill ensem-
ble) but also and especially with structural uncertainties in
the models and the different parametric choices (Mauritsen
et al., 2012; Tebaldi and Knutti, 2007). Structural sources of
uncertainties include on the most basic level different hor-
izontal and vertical grids in all model compartments (at-
mosphere, ocean, land) as well as the prescribed climatolo-
gies (e.g. ozone) and the formulation of, for example, snow
and ice albedo (cf.Mauritsen et al., 2012). Even if differ-
ent models share certain components or portions of the same
numerical code (cf. the model genealogy ofMasson and
Knutti, 2011), the tuning of associated parameters likely dif-
fers. The models contributing to CMIP5 and PMIP3 (Taylor
et al., 2012) generally represent an improvement over the
previous generation of models which contributed to CMIP3

(Meehl et al., 2007). In particular, some models (including
MPI-ESM) provide palaeo-simulations at the same resolu-
tion as the historical and the future scenario simulations.
Schmidt et al.(2013) emphasize the importance of such a set-
up for palaeo-simulations to be useful in assessing the qual-
ity of simulations of the 20th century and of future climate
projections. However, in contrast to the COSMOS-Mill en-
semble, none of the past1000 simulations performed include
calculations of a carbon cycle. We consider the multi-model
analysis to clarify the consistency of simulations under the
parametric differences between the models and the common
or distinct structural uncertainties of the models (e.g.Sander-
son and Knutti, 2012). Therefore, we do not expect a priori
increased consistency compared to our earlier results (Bothe
et al., 2013).

Section 2 gives details on the methodological approach
and the employed data before we present results on the con-
sistency of the past1000 ensemble with the reconstructions
and identify sources for the found (lack of) consistency in
Sect. 3. In Sect. 4 we discuss our results. Short concluding
remarks close the manuscript.

2 Methods and data

2.1 Methods

To build confidence in a simulation ensemble, we may either
consider the accuracy of its members in reproducing a given
(observed) target (e.g. followingTaylor, 2001) or assess its
statistical consistency with a target data set (seeMarzban
et al., 2011). The evaluation of ensemble consistency fol-
lows the paradigm of a statistically indistinguishable ensem-
ble (for a more detailed discussion of the methods, see, for
example,Bothe et al., 2013). The underlying null hypothesis
is that the verification target and the simulations are sam-
ples from a common distribution and therefore exchangeable
(Annan and Hargreaves, 2010; Rougier et al., 2013). In the
paleoclimate context, climate reconstructions are our best es-
timate of an observed target.

We analyse the ensemble consistency based on two points
of view. Firstly, probabilistic consistency considers the mul-
tivariate distribution of ensemble and verification data, and,
secondly, climatological consistency considers the clima-
tological distribution of the individual simulations (e.g.
Johnson and Bowler, 2009; Marzban et al., 2011; Wilks,
2011).

The probabilistic evaluation addresses how the frequencies
of occurrence of the ensemble data compare to those of the
verification data. It allows not only assessing the ensemble
variance but also detecting biases. The climatological eval-
uation analyses the climatological variance and the biases
within the individual ensemble members in relation to that
of the verification data.
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We can assess the probabilistic component of consistency
for an ensemble by sorting and ranking the target against
the ensemble data (e.g.Anderson, 1996; Jolliffe and Primo,
2008; Annan and Hargreaves, 2010; Marzban et al., 2011;
Hargreaves et al., 2011). Counts of the calculated ranks are
displayed as histograms followingAnderson(1996). Under
the null hypothesis of exchangeability (i.e. indistinguisha-
bility) of the distributions, a histogram should be flat since
frequencies of observed and ensemble estimated data agree
for a consistent ensemble (Murphy, 1973). The criterion of
flatness does not state that the ensemble indeed is consistent
(as discussed by, for example,Hamill, 2001; Marzban et al.,
2011), but it is a necessary condition for our ensemble to be
a reliable representation relative to the chosen verification.

Marzban et al.(2011) emphasize the climatological con-
sistency. They propose to evaluate it by plotting the differ-
ence between the simulated and the target quantiles against
the target quantiles. For a consistent simulation, such resid-
ual quantile-quantile plots should display a flat outcome at
zero. Residual quantile-quantile (r-q-q) plots ease the inter-
pretation compared to conventional quantile-quantile plots.
Marzban et al.(2011) andBothe et al.(2013) provide more
details on the advantages of the r-q-q plots.

Residual quantiles and rank counts provide easily under-
standable visualizations of deviations of the ensemble rela-
tive to the verification data. In r-q-q plots, biases of the en-
semble data are seen as displacements from they = 0 line.
A positive slope in the residual quantiles highlights an over-
estimation of the difference of the quantiles to the mean (i.e.
the variance) compared to the target quantiles, indicating an
over-dispersive data set. On the other hand, a negative slope
highlights an underestimation of the variance, a too narrow
data set, which we refer to as under-dispersive.

In rank histograms, dome shapes (U-shapes) indicate too
wide (too narrow) probabilistic distributions: verification
data are more often close to (distant from) the mean of the
distribution compared to the simulation ensemble. Positive
(negative) slopes represent negative (positive) ensemble bi-
ases: the target data over-populate high (low) ranks.

We use theχ2 goodness-of-fit test to test for the consis-
tency of a rank count with the uniform (i.e. flat) null hy-
pothesis.Jolliffe and Primo(2008) provide a decomposition
of the test to consider further the individual deviations from
the expected flat outcome. These are, among others, bias and
spread deviations. Goodness-of-fit statistics are presented for
these two single-deviation tests and the full test and discussed
in terms of theirp values with respect to the upper 90 % crit-
ical values (for single deviation tests, it equals 2.706; for the
full test, with 8 degree of freedom of theχ2 distribution it
equals 13.362).

The analyses require the target to provide an accurate rep-
resentation of the past climate trajectory, a condition that is
hardly met in paleoclimate studies due to the associated un-
certainties (e.g.Wilson et al., 2007; Bradley, 2011; Randall
et al., 2007; Schmidt et al., 2011, 2013). Otherwise, we

have to include an uncertainty estimate in the ensemble data
(Anderson, 1996). Uncertainty estimates for the reconstruc-
tion targets are used to inflate the simulated data.

Analyses under the paradigm of statistical indistinguisha-
bility require special care if we use them in the context
of palaeoclimatology. Any simulated or reconstructed time
series over the last 1000 yr includes components of forced
and internal variability. If we assume that our estimates
of past forcings are approximately correct, there should be
a common forced signal in simulations and reconstructions.
However, the reconstruction data uncertainties are possibly
a lower bound for the disagreement between simulations and
their validation target (Schmidt et al., 2013). Our analysis
identifies whether the total variability (i.e. externally forced
and internally generated together) originates from distribu-
tions that are similar enough to be indistinguishable. In this
case, we would state that the reconstruction and the simu-
lation ensemble are consistent. If the variability of the en-
semble data deviates significantly from that of the target, our
approach identifies inconsistencies. The approach can also
be used to highlight in which period the long-term signals
do not agree between the reconstruction and the simulation
ensemble. Arising lack of consistency in terms of the dis-
tributional characteristics indicates that the simulations and
the reconstructions provide different representations of the
past climate. Such deviations are informative as they suggest
a need for model and reconstruction-method improvements.
However, they also limit the validity of conclusions on past
climate variability, the climate response to past forcings or
the anthropogenic fingerprint.

The assessment of consistency reduces, in principle, the
subjectivity associated with the comparison of simulations
and reconstructions (cf.Bothe et al., 2013). However, the
large uncertainties require reconsideration of the importance
of distributional deviations (cf.Hargreaves et al., 2011; An-
nan et al., 2011). Over-dispersion does not necessarily ques-
tion the overall reliability of the ensemble (seeHargreaves
et al., 2011; Annan et al., 2011). On the other hand, if a sim-
ulation ensemble is found to be too narrow or biased con-
sidering the uncertainty, further simple comparison studies
between the ensemble and the reconstruction may be mis-
leading on the considered scales. We have to consider the
suggested lack of consistency in subsequent research, but we
may also conclude that, with the present uncertainties, com-
parison of simulated and reconstructed estimates is not in-
formative. Note that consistency (i.e. exchangeability) and
agreement (i.e. accuracy of the temporal patterns) may differ
regionally; inconsistent regions can agree in the signal, and
regions lacking common signals can be consistent.

2.2 Data

If we want to achieve a robust evaluation of the consistency
of a simulation ensemble, we have to consider, ideally, more
than one data set and more than one parameter, not least
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because of the prominent uncertainties in climate reconstruc-
tions. However, the global temperature field reconstruction
by Mann et al.(2009) is the only data that allows for a glob-
ally coherent evaluation of a climate parameter for the last
millennium. It consists of decadally smoothed data. We fur-
ther employ area-averaged temperature reconstructions fo-
cused on showing two data sets for the last 500 yr for tem-
perature in Central Europe (Dobrovolný et al., 2010) and
the North American Southwest (Wahl and Smerdon, 2012).
These data sets serve as examples for area-averaged recon-
structions. The focus is motivated by the assumption that
reconstructions and forcing data are generally more reliable
during this period (cf.Bothe et al., 2013).

The past1000 simulations available from the CMIP5
database were performed with the following models
(see Table1): BCC, CCSM4 (Landrum et al., 2013),
FGOALS (Zhou et al., 2011), GISS-R (two realiza-
tions, http://data.giss.nasa.gov/modelE/ar5/), IPSL-CM5A-
LR (Hourdin et al., 2012) and the current generation of MPI-
ESM (e.g. including an updated version of the atmospheric
general circulation component ECHAM6,Giorgetta et al.,
2013; Jungclaus et al., 2013). The CSIRO PMIP3-only sim-
ulation is included in our ensemble (different fromPhipps
et al., 2012). We do not consider the further members of the
GISS-R ensemble (R21, R22). These would over-emphasize
the influence of GISS-R on the ensemble measures.

We exclude the simulation with MIROC-ESM (by the At-
mosphere and Ocean Research Institute at the University
of Tokyo, the National Institute for Environmental Studies,
and Japan Agency for Marine–Earth Science and Technol-
ogy) since it shows a problematic long-term drift (A. Abe-
Ouchi, personal communication, 2012). On the other hand,
a simple correction is performed for the drift of the GISS-
R simulations (G. A. Schmidt, personal communication,
2012, see alsoSchmidt, 2012): we subtract a LOWESS (lo-
cally weighted scatter plot smoothing) fit (influence of about
600 yr) to the GISS-R pre-industrial control run (piControl)
from the annually resolved data of interest (i.e. the grid-point
data for the field evaluation and the relevant time series for
the area-averaged assessment).

We generally use non-overlapping decadal means for sim-
ulations and reconstructions in the commonly included pe-
riod 1000–1849 CE and anomalies relative to this period. For
the data fromMann et al.(2009), we choose the central date
for each decade (i.e. 1844 for the 1840s) since the data are
originally decadally smoothed. Results change slightly, but
conclusions are the same when we employ non-overlapping
decadal means for this reconstruction. We also employ the
three sub-periods 1000s–1270s, 1280s–1550s, and 1560s–
1830s to evaluate how consistency may change over time. In-
clusion of climates strongly biased from our reference period
(e.g. the industrial period) would complicate our assessment
of consistency focused on palaeoclimates. The different grids
of the simulations require interpolating the data onto a com-
mon T21 grid (∼ 5◦).

The global field reconstruction further allows evaluating
the consistency of approximations of major climate indices
which are commonly interpreted to present low-dimensional
descriptors of the climate system (cf.Tsonis et al., 2011;
Dima and Lohmann, 2007). Our approach is, as well for
these data, a step beyond the pure “by eye” approaches of
reconstruction-simulation assessment. We construct two in-
dices as field averages over the Pacific (150◦ E–140◦ W, 24–
53◦ N) and Atlantic (74◦ W–0◦ E, 2–53◦ N) domains. Higher
latitudes are excluded to avoid effects from sea-ice variabil-
ity. Simulated indices are calculated from surface air temper-
atures, in contrast to the common definition via sea-surface
or upper ocean temperatures. This appears justified since the
reconstruction is a hybrid representation of sea-surface and
near-surface air temperature (cf.Brohan et al., 2006; Mann
et al., 2009) with only a minority of underlying proxies being
of marine origin. The indices are denoted by PDO (Pacific
Decadal Oscillation) and AMO (Atlantic Multidecadal Os-
cillation), although our definitions differ from the convention
(e.g.Zanchettin et al., 2013a, and references therein). We do
not preprocess the input data and do not standardize the se-
ries. The indices accumulate globally and regionally forced
as well as potential internal signals. Our later conclusions are
robust against different definitions of the regional indices.

We have to include an uncertainty estimate in our anal-
yses by inflating the simulation ensemble (cf.Anderson,
1996). These are generally randomly selected from a Gaus-
sian distribution with zero mean. For the regional reconstruc-
tions, the standard deviations are the reported standard errors,
while, for the constructed indices, we use a standard devi-
ation of 0.2 K, which approximates the estimates given for
similar indices byMann et al.(2009). For the field recon-
struction, we followBothe et al.(2013) and take the largest
standard error (σ ≈ 0.1729) reported for the Northern Hemi-
sphere mean temperature series ofMann et al.(2009) as
a reasonable uncertainty estimate for the field data.

We observe that neglecting uncertainties in the reconstruc-
tion can lead to pronounced differences in our inferences
about the probabilistic and climatological consistency of the
ensemble. That is, the ensemble may appear under-dispersive
or even consistent excluding the uncertainties, although it is
found to be over-dispersive if they are considered.

Our knowledge of past forcings is rather weakly con-
strained as seen in comparisons of the available reconstruc-
tions for land use, total solar irradiance and volcanic erup-
tions as compiled bySchmidt et al.(2011, see also discus-
sion by Schmidt et al., 2013). For the employed simula-
tions, differences are especially noted in the volcanic forcing,
which in turn implies that they mostly influence the annual
timescale and pentad data. We will return to this point in our
discussion of origins of (lack of) consistency in Sect. 4.

Consistency in our setting depends on the reference time.
Due to the way the reconstructions are produced, it is in prin-
ciple advisable to centre all data on the calibration period
of the reconstruction (J. Smerdon, personal communication,
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Table 1. Selected climate model simulations and their abbreviations, the institutes of origin and the respective solar and volcanic forcing
data sets. Full references are (from top to bottom)Vieira et al.(2011), Gao et al.(2008), Steinhilber et al.(2009), Crowley(2000), Jones and
Mann(2004) andCrowley et al.(2008).

Model Institute Solar Volcanic
(abbreviation)

bcc-csm1-1 Beijing Climate Center, Vieira Gao
(BCC) China Meteorological Administration

CCSM4 National Center for Atmospheric Research Vieira Gao

CSIRO-Mk-3L-1-2 University of New South Wales Steinhilber Crowley (2008)
(CSIRO)

FGOALS-gl State Key Laboratory of Numerical Modeling for Crowley (2000), Crowley (2000),
(FGOALS) Atmospheric Sciences and Geophysical Fluid Jones and Mann Jones and Mann

Dynamics, Institute of Atmospheric Physics,
Chinese Academy of Sciences

GISS-E2-R National Aeronautic and Space Administration, Vieira Crowley (2008)
(GISS-R24) Goddard Institute for Space Studies

GISS-E2-R National Aeronautic and Space Administration, Vieira Gao
(GISS-R25) Goddard Institute for Space Studies

MPI-ESM-P Max Planck Institute for Meteorology Vieira Crowley (2008)
(MPI-ESM)

IPSL-CM5A-LR Institut Pierre-Simon Laplace Vieira Gao
(IPSL) des sciences de l’environnement

2012) since this time is the reference for the calculation of
uncertainties. We instead centre our data over the full studied
period, and thereby shift the focus on to the comparability of
the variability over the pre-industrial time only.

We stress that our results neither allow the ranking of the
various simulated realizations against one another nor the de-
cision of whether an individual simulation or even the ensem-
ble mean rather than the reconstruction is more representa-
tive of past climate variability.

3 Results

3.1 Global field consistency

Figure1 gives a first impression of the probabilistic consis-
tency of the past1000 ensemble with the global temperature
field reconstruction byMann et al.(2009). We display the
p values of tests for a uniform outcome of the rank counts
at every grid point. The goodness-of-fit test leads to the re-
jection of the null hypothesis of a uniform outcome at grid
points for ap value larger than 0.9 (red in Fig.1). Thus,
the analysis shows a lack of consistency for large areas of
the globe for the full period (Fig.1a). In contrast, the Eu-
ropean Arctic is the only spatially extended area for which
rank counts deviate significantly from uniformity for an ar-
bitrary shorter period (Fig.1b). Possible consistency is diag-
nosed elsewhere. If we test for individual deviations of bias

or spread, at least one of them is significant over much of the
globe for both the full and the shorter period (Fig.1c, and d).

This general impression has to be complemented by a de-
tailed look at individual locations to identify the character
of the inconsistencies. Considering a sample of grid points
and three different sub-periods, residual quantile distribu-
tions display various different structures when evaluating
the climatological consistency of the ensemble (Fig.2, left
panels, extended sample in the Supplement). We refer to
Sect.2.1 for a description of how to interpret the visual-
izations (see also, for example,Bothe et al., 2013). A too
wide simulated distribution arises as a common feature due
to very strong overestimation of cold anomalies in the sim-
ulated data and notable overestimation of positive anoma-
lies: we see a positive slope in the residual quantiles. The
most extreme over-dispersion in Fig.2 is seen in the top left
panel for 73.1◦ E and 63.7◦ S. Most interestingly though, the
reconstructed quantile distributions frequently display con-
secutive shifts between the sub-periods. In turn, equivalent
changes occur in the residual quantiles of the simulated data
(cf. 11.2◦ E, 2.8◦ S). Often, but not always, the reconstructed
quantile distributions shift to more negative values. This re-
sults, at some grid points, in the following behaviour of the
residuals of simulated quantiles: residuals change from be-
ing negatively biased to being positively biased with an in-
terval of nearly negligible residuals and, thus, an interval
for which reconstructed and simulated quantiles appear to
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Fig. 1. Global assessment of the goodness-of-fit test for the field data considering uncertainties in the verification target. Plotted are lower
p values for tests performed at each individual grid point. In the upper row: fullχ2 test; in the lower row: maximum ofp values for single
deviation tests for bias and spread. The maximum of bothp values highlights grid points where at least one test is significant. Blue indicates
smaller than 0.1, dark to light grey in steps of 0.2 within 0.1 and 0.9, red larger than 0.9. Red means rejection of the uniform null hypothesis.
(a) and(c) indicate full period,(b) and(d) decades from the 1240s to the 1490s.

be consistent. That is, we see a negative offset fromy = 0
in the early period and a positive offset fromy = 0 in the
late period. In between there is an interval when the resid-
ual quantiles are close toy = 0. These shifts suggest that the
mean state of the reconstruction changes between the three
sub-periods, and that the simulated distributions do not fol-
low but usually feature a rather constant climatology. Pat-
terns of residual quantiles are generally comparable between
the different simulations. However, ensemble members may
feature distinct residuals especially in the distributional tails.
Obviously, the sample for each sub-period is small since we
use non-overlapping decadal means with the full period con-
sisting of 85 data points.

For the same sample, rank counts confirm probabilistically
the result of a generally over-dispersive ensemble by showing
predominantly dome shapes (Fig.2, right panels): the target
data occupy too often the central ranks as again best seen in
the panel for 73.1◦ E and 63.7◦ S. Compensating discrepan-
cies in different sub-periods can imply consistency over the
full period. For example, opposite biases cancel each other
out, and the rank counts are approximately uniform over the
full period (e.g. see grid point 11.2◦ E, 2.8◦ S). Inconsisten-
cies originate from different discrepancies at different loca-
tions and at the same location for different sub-periods.

Thus, according to probabilistic and climatological con-
siderations the ensemble appears to be often over-dispersive
relative to the field reconstruction. The too-dispersive ensem-
ble character agrees with the findings ofBothe et al.(2013)
for the COSMOS-Mill ensemble (Jungclaus et al., 2010).

Furthermore, since the distributional evaluation suggests
changes over time in the relation between the reconstruction
and the simulation ensemble, we can infer that reconstruc-
tion and simulations rarely represent the same climate tra-
jectory. Neither the single-model ensemble (COSMOS-Mill)
nor the past1000 multi-model ensemble reliably represents
the climate evolution suggested by the reconstruction. How-
ever, this may be due to the uncertainties associated with the
verification data.

3.2 Sources of disagreement for the global fields

Distributional inconsistencies reduce the value of assess-
ing the agreement between simulations and reconstructions.
Nevertheless, the mutual (dis)agreement sheds light on the
shortcomings of models and reconstructions.

The lack of consistency of the past1000 ensemble is
slightly less prominent compared to the COSMOS-Mill en-
semble for the global temperature field for the full and
the sub-periods and for the full and single tests. However,
Bothe et al.(2013) used interannually resolved (but decadally
smoothed) data, and here we use non-overlapping decadal
averages. For both ensembles, deviations of the simulations
from the reconstruction differ strongly between different sub-
periods and even include opposite deviations. It seems that
overall over-dispersion is less prominent for the decadally re-
solved multi-model past1000 ensemble than for the interan-
nually resolved COSMOS-Mill ensemble. We note that de-
viations in spread and bias are nevertheless pronounced in
Fig. 2 and that individual simulations show rather similar
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Fig. 2.Grid-point analysis of ensemble consistency for three sub-periods: 1000s–1270s, 1280s–1550s, and 1560s–1830s. Left three columns:
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are not significant. Residual quantile plots show on thex axis the quantiles of the target and on they axis the difference between simulated
and target quantiles.

climatological residual quantiles relative to the reconstruc-
tion. This leads us to the conclusion that the less prominent
over-dispersion compared to the COSMOS-Mill ensemble is
not so much due to the multi-model character of the past1000
ensemble and to differences in the used forcing data sets, but
that it is mostly due to the fact that the analyses of the two
ensembles use different temporal resolutions.

To identify sources of disagreement, we first consider
mapped correlation coefficients between simulations and re-
constructions (Fig.3). Again we employ non-overlapping
decadal means. Each simulated and reconstructed time series
represents one realization of a climate response to the em-
ployed radiative forcing perturbations modulated by the in-
ternal variability. We also expect differences in parameteriza-
tions and methodologies to affect the outcome. We consider
correlation analysis as a universal method in studies compar-
ing simulations and reconstructions. Finding significant cor-
relations between individual simulations and the reconstruc-
tion indicates that both data sets feature a similar signal, but
they do not give information about the origin of the signal or
whether the origin is common in both data sets.

Indeed, mapped correlation coefficients suggest various
degrees of agreement between individual simulations and the
reconstruction (Fig.3). Correlations are significant nearly ev-
erywhere for the ensemble mean (two-sided 99 % level) and
CCSM4 (two-sided 90 % level) but less widespread for the
other simulations. Most simulations correlate significantly
negative with the reconstruction at some grid points over
Antarctica. All simulations correlate significantly over the
western tropical Pacific, the subtropical North Pacific and the
South Atlantic. The simulations and the global reconstruc-
tion do not agree on the, possibly externally forced, phasing
of variations in Antarctica and the eastern and central tropical
Pacific. We note thatMann et al.(2009) report a pronounced
cold anomaly in the tropical Pacific for the Medieval Warm
Period (MWP). Prominent gaps in significance are also vis-
ible for the ensemble mean and for CCSM4 over the sub-
polar North Atlantic, the tropical Pacific, the Indian Ocean
and central Eurasia. Similarities in the correlation patterns
may be interpreted as reflecting not only the intra-ensemble
forcing variability/similarity but also the association between
the models (cf.Masson and Knutti, 2011).

www.clim-past.net/9/2471/2013/ Clim. Past, 9, 2471–2487, 2013



2478 O. Bothe et al.: CMIP5/PMIP3-past1000 consistency

−150 −100 −50 0 50 100 150

−
5

0
0

5
0

a) BCC−CSM1.1
re

v
(L

a
ti
tu

d
e

[1
:3

1
])

−150 −100 −50 0 50 100 150

−
5

0
0

5
0

b) CCSM4

re
v
(L

a
ti
tu

d
e

[1
:3

1
])

−150 −100 −50 0 50 100 150

−
5

0
0

5
0

c) CSIRO−MK3L−1.2

re
v
(L

a
ti
tu

d
e

[1
:3

1
])

−150 −100 −50 0 50 100 150

−
5

0
0

5
0

d) FGOALS−gl

re
v
(L

a
ti
tu

d
e

[1
:3

1
])

−150 −100 −50 0 50 100 150
−

5
0

0
5

0

e) GISS−E2−R_24

re
v
(L

a
ti
tu

d
e

[1
:3

1
])

−150 −100 −50 0 50 100 150

−
5

0
0

5
0

f) GISS−E2−R_25

re
v
(L

a
ti
tu

d
e

[1
:3

1
])

−150 −100 −50 0 50 100 150

−
5

0
0

5
0

g) MPI−ESM−P

re
v
(L

a
ti
tu

d
e

[1
:3

1
])

−150 −100 −50 0 50 100 150

−
5

0
0

5
0

h) IPSL−CM5A−LR

re
v
(L

a
ti
tu

d
e

[1
:3

1
])

−0.7

−0.5

−0.3

−0.1

0.1

0.3

0.5

0.7

−150 −100 −50 0 50 100 150

−
5

0
0

5
0

i) Ensemble mean

re
v
(L

a
ti
tu

d
e

[1
:3

1
])

Fig. 3. Mapped grid-point correlation coefficients between surface air temperature series from the considered simulations and from the
reconstruction. See panel titles for individual simulations. Ensemble mean in(i). Grey (black) dots mark two-sided 90 % (99 %) confidence.

Time–latitude plots of zonal means allow further compar-
ison of the different data sets (Fig.4). The reconstruction
represents a near-global transition from positive anomalies
in the first half (the MWP) to negative anomalies in the sec-
ond half (Little Ice Age, LIA) of the considered 850 yr period
(Fig. 4). The zonal means are possibly not representative in
high southern latitudes due to data sparseness. The strongest
warmth occurs at the beginning of the millennium. Episodic
warmth interrupts the LIA during the 15th and 18th centuries
and is generally confined south of 50◦ N.

The simulations capture neither the timing of the strongest
warmth nor the near-global MWP–LIA transition. The en-
semble generally displays near-stationary warm conditions.
Short cold episodes related to assumed volcanic eruptions
interrupt this warmth. Their timing, amplitude and spatio-
temporal extent are similar in individual simulations. Weaker
cold excursions reflect to some extent the variety of the em-
ployed forcings for reconstructed volcanic eruption proper-
ties (cf. Schmidt et al., 2011). The ensemble mean differs
most notably from the reconstruction in the lack of persis-
tent northern hemispheric cold anomalies after about 1450
and in a stronger simulated cold signal in the 13th century.
Otherwise it visually agrees well with the reconstruction.

We note that ensemble-mean correlation coefficients are
often especially high (Fig.3h) close to the proxy loca-
tions employed byMann et al.(2009). This implies stronger
commonalities at those locations where our proxy informa-
tion about past climates is collected. That is, the similar-
ity may allow inferring that simulations, reconstructions and

underlying proxies as well as the forcing series relate to
a similar underlying climate signal. Such inference is in ac-
cordance with the results ofSchurer et al.(2013), Fernández-
Donado et al.(2013) and Hind et al. (2012). On the other
hand, the hypothesized common signal is concealed by the
internal variability of the simulated climates and the addi-
tional sources of noise associated with simulations and re-
constructions. Nevertheless, we find no identifiable relation-
ship between the reconstruction and the simulations when
plotting the data against each other at the grid-point level.
Although correlations are significant, the noise still prevails
over the signal.

3.3 Consistency of indices

Since the North Pacific and North Atlantic are of particu-
lar interest in assessments of low-frequency climate variabil-
ity and the field evaluation indicates, at best, limited consis-
tency there (see Fig.1), we next consider surface air tem-
perature indices for both domains (see Sect.2.2 for details).
Accounting for uncertainty in the reconstructions, the full-
period residual distributions of simulated Pacific (PDO) and
Atlantic (AMO) time series arise as to some extent over-
dispersive (Fig.5a and c) mainly due to an overestima-
tion of the tails especially for negative anomalies result-
ing in a slight positive slope of the residuals. Residuals are
nearly negligible for some simulations. The 90 % envelope
for a block-bootstrap approach marginally includes the zero
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Fig. 4. Time–latitude plots of full-field zonal mean temperature anomalies (in K) with reference to the analysis period. See panel titles for
individual simulations. Ensemble mean in(i) and reconstruction in(j) .

line of consistency for the PDO. Thus, the sampling uncer-
tainties prevent rejecting consistency.

For both indices, the reconstructed distributions for sub-
periods shift from mainly positive temperature anomalies
towards negative anomalies (Fig.5b and d). The associ-
ated residual quantiles resemble the temporal development
of residual grid-point-data quantiles. A slight cold bias in
the early sub-period with especially large deviations for the
cold tail changes to a generally over-dispersive relationship
in the latest sub-periods. That is, we see a negative offset
from y = 0 in the early period but a positive slope in the lat-
est period. Distributional changes between the last two sub-
periods are less prominent for PDO compared to AMO.

The full-period rank counts are significantly over-
dispersive for both PDO and AMO (Fig.5e and g) accord-
ing to the goodness-of-fit test, indicating that the ensemble
is not probabilistically consistent with the reconstruction for
both indices because the target data over-populate the cen-
tral ranks. The bootstrapped intervals confirm the rejection
of consistency although only marginally for the AMO.

For the sub-periods, the simulation ensembles are signif-
icantly biased for both indices in the early and significantly
over-dispersive in the central sub-period (Fig.5f and h): we
see an overpopulation of the high or low ranks in the early pe-
riod but a dome shape in the central period. Bias and spread
are significant for the PDO in the last sub-period, but only
bias is significant for the AMO in this period (Fig.5f and h).
Especially prominent are the over-dispersion for the late-
period PDO estimates and the bias for the late-period AMO.
The sub-period results are sensitive to the specific regional
definitions of our indices, but the general lack of consistency
is robust.

Thus, the regional indices confirm the field assessment re-
sult of a simulation ensemble that tends to be over-dispersive
relative to the global field reconstruction. Again, the simula-
tion data do not reproduce the notable changes in the recon-
structed distributions.
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Fig. 5. Consistency of the indices for the North Pacific (PDO) and North Atlantic (AMO) regions.(a–d) Residual quantile-quantile plots
(in K) for (a, c) the full period and(b, d) three sub-periods (defined as for Fig.2) of 28 records (early, light grey, middle, dark grey, late,
coloured).(e–h)Rank histogram counts for(e, g) the full period and(f, h) the three sub-periods (light grey to black). Numbers are theχ2

statistics for the periods. In(f, h) numbers refer, from left to right, to the early to late sub-periods. Blue horizontal lines give the expected
average count for a uniform histogram.(i, j) Time series of the indices (in K) constructed from non-overlapping decadal means. Colour code
as in legend except for shading. Shading for residual quantiles and rank counts(a, c, e, g)gives the 90 % envelope of block bootstrapping
2000 replicates of block length 5. Residual quantile plots show on thex axis the quantiles of the target and on they axis the difference
between simulated and target quantiles.

3.4 Sources of disagreement of Atlantic and Pacific
indices

For the indices considered in the present study, the ensem-
ble mean and the reconstruction have evolved, by eye, sim-
ilarly for the Atlantic and Pacific indices since about 1650
(Fig. 5i and j). Amplitudes agree less than tendencies. The
most prominent example of differences in long-term trends
leading to biased estimates is the different timing of medieval
warmth. Note further the strong disagreement due to, on av-
erage, colder reconstructed indices from the 14th to 17th cen-
turies for the PDO and from the 16th to 18th centuries for the
AMO.

The indices display some intra-ensemble and ensemble-
reconstruction agreement. Again we discuss correlations as
an example for common practices. Ensemble-mean indices

correlate atr ≈ 0.5 with the reconstructed ones. Correlations
with the reconstructed index are larger than 0.5 for the PDO
in FGOALS and for the AMO in CSIRO. Correlations among
simulations larger than 0.5 are only found for the AMO and
most prominently for MPI-ESM and CSIRO. PDO and AMO
correlate strongest in the reconstruction, CSIRO and the en-
semble mean (r > 0.8). If the analysis is repeated for glob-
ally detrended data, no strong correlations are seen between
the reconstructed and simulated indices.

We did not discuss regional average indices inBothe
et al.(2013), but in both regions the COSMOS-Mill simula-
tions displayed more variability than the reconstruction and,
for the North Atlantic, the ensemble consistency changed
strongly between the considered sub-periods.
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the reconstructions by (top panels)Dobrovolný et al.(2010) of Central European annual temperature and (bottom panels)Wahl and Smerdon
(2012) of North American Southwest annual temperature. For details on the representation, see the caption of Fig.5.

3.5 Consistency of regional and hemispheric
reconstructions

The assessment of the global field reconstruction raises the
question of whether the ensemble displays comparable lack
of consistency and related sources of disagreement relative to
other reconstructions. We consider additional regional area-
averaged temperature reconstructions to evaluate whether the
mixed result relative to theMann et al.(2009) field recon-
struction is representative. Already the prominent uncertainty
of climate reconstructions requires such additional evalua-
tions.

We show only results for annual temperatures for cen-
tral Europe (Dobrovolný et al., 2010) and the North Amer-
ican Southwest (Wahl and Smerdon, 2012) starting from
1500 CE. Other regional reconstructions were assessed as
well but are not discussed in depth. Accounting for uncer-
tainties in the reconstructions, residual quantile distributions
show often a positive slope over the full period and there-
fore indicate over-dispersion for the decadal Central Eu-
ropean temperature data (Fig.6a). On the other hand, the
data for the North American Southwest are mainly consis-
tent (Fig.6b) with residuals close toy = 0. Nevertheless de-
viations occur for some simulations but are not significant.
These include an over- as well as an under-estimation of the
cold tail and an over-estimation of the warm tail. The differ-
ences among simulations are more diverse for climatological
residual quantiles relative to the Southwestern North Amer-
ica reconstruction compared to the results concerning the

large-scale indices and the grid-point data. Climatological
relations can differ remarkably for different regional recon-
structions as exemplified by the Central European and North
American Southwest data.

Rank histograms (Fig.6c and d) indicate that the en-
semble is probabilistically consistent with the North Amer-
ican Southwest reconstruction, but theχ2 goodness-of-fit
test leads us to reject uniformity for the European data rank
counts, since the statistics is only marginally significant at
the considered one-sided 90 % level (Fig.6c and d). Simi-
larly, the bootstrapped intervals in Fig.6a–d do only just (i.e.
marginally) result in rejecting consistency of the European
data, but they in principle confirm the consistency for the
American data. The bootstrapped envelope also highlights
the high sampling variability. We note that over-dispersive
deviations are much smaller for the Central European data
than for the large-scale indices or the grid-point data.

The Supplement provides figures for three of the nine
Northern Hemisphere mean reconstructions of annual-mean
temperature from the recalibration ensemble byFrank et al.
(2010). Frank et al.recalibrated nine northern hemispheric
mean temperature reconstructions to different periods of ob-
servational data resulting in 521 individual reconstructions.
We consider four recalibration periods for the three different
reconstructions.

Consistency of the simulation ensemble with the consid-
ered subset of recalibrated reconstructions is generally lim-
ited to some sub-periods, which generally differ for the indi-
vidual recalibrated reconstruction series. Over-dispersion is

www.clim-past.net/9/2471/2013/ Clim. Past, 9, 2471–2487, 2013



2482 O. Bothe et al.: CMIP5/PMIP3-past1000 consistency

the most common deviation, but prominent biases also oc-
cur over individual sub-periods. Nevertheless, we cannot re-
ject consistency relative to the reconstruction byFrank et al.
(2007): the ensemble is consistent with the selected recali-
brated versions of this reconstruction.

The assessment of consistency of the PMIP3-past1000 en-
semble relative to the members of theFrank et al.(2010)
ensemble highlights an additional feature. The recalibrated
series for a specific reconstruction display different variabil-
ity dependent on the specific recalibration period. Therefore
the simulation ensemble can be consistent with respect to a
reconstruction recalibrated to a specific period while lack-
ing consistency with the same reconstruction recalibrated to
a different period. This ambiguity highlights the inherent un-
certainty in our estimates for the climate of the last millen-
nium and stresses the necessity of increasing the quality of
reconstructions, of simulations and of the external-forcing
estimates used for the simulations.

However, the evaluation of regional- and large-scale mean
temperature reconstructions indicates better consistency of
the ensemble relative to the two semi-millennial regional
annual reconstructions than for either large-scale indices
or grid-point data during the full period. On the other
hand, analyses on additional regional and Northern Hemi-
sphere mean millennial-scale reconstructions indicate usu-
ally stronger climatologically and probabilistically over-
dispersive relations with, again, notable variations in con-
sistency over time (not shown). These regional area-average
data sets often differ more strongly in their variability in the
simulation ensemble than the central European and annual
North American Southwest data.

We note that the ensemble shows negligible under-
dispersion relative to the European reconstruction if we ex-
clude the uncertainties (not shown), but it indicates slight
over-dispersion under uncertainties (Fig.6a). One could ar-
gue that, for an ideal ensemble, such rather weak opposite
deviations indicate a consistent ensemble and only an over-
estimation of the target uncertainties (Appendix B ofPers-
son, 2011, see alsoHargreaves et al., 2011).

3.6 Sources of regional disagreement

Figure6 clearly displays that there is no common signal in
the regional average time series for Central Europe for indi-
vidual simulations and reconstructions. This was similarly
seen for the annually resolved Central European tempera-
ture indices of the COSMOS-Mill ensemble. Obviously, in-
ternal variability and methodological uncertainties dominate
over the forced variability on the decadal and the inter-annual
timescale for both ensembles. However, the COSMOS-Mill
ensemble is consistent with the annual data ofDobrovolný
et al. (2010) on the interannual timescale. Compared to
the European data, the past1000-simulated North American
Southwest temperature series agree slightly better with the
respective reconstruction for the non-overlapping decadal

means. Considering the full ensemble, no common forced
signal can be found. Thus we do not further comment on the
accuracy of both data sets.

The PMIP3-past1000 ensemble and the recalibrated hemi-
spheric mean reconstructions clearly differ in the resolved
multidecadal-to-centennial and interdecadal variability. Con-
sequently and similar to the global field data, simulations
and reconstructions often differ in their long-term multi-
centennial trends (e.g. the passage from the MWP to the LIA
and to the industrial warming period).

4 Discussions

For the field and the index data, inconsistencies over the full
period are due to a generally warmer start of the millennium
in the reconstruction (see Fig.4). This would be mitigated
for the analysis of ensemble consistency and for the index
agreement between GISS and the reconstruction if the drift
were not corrected for GISS-R (cf.Schmidt, 2012). Decadal
temperatures and their variability are more comparable in the
period of the early LIA. Shifts in reconstructed quantiles to-
wards more negative anomalies and in simulated residuals
towards a more positive bias reflect the more pronounced re-
constructed MWP–LIA transition and, thus, the differences
in the long-term trends. Note that specific results are sen-
sitive to the choice of the reference period. If we align the
data sets to a different common period, specific relationships
are going to change relative to most reconstructions further
highlighting the large discrepancies between the simulations
and the reconstructions. The differences in estimates of cold
anomaly quantiles reflect that, on the one hand, reconstruc-
tions possibly underestimate the cooling subsequent to large
volcanic eruptions (Mann et al., 2012). On the other hand,
models may be too sensitive to the subsequent radiative forc-
ing anomaly (e.g.Anchukaitis et al., 2012).

In view of a possible impact of the choice of forcing in-
puts on the simulated data, one might think about partition-
ing the ensemble relative to the various combinations of forc-
ings (Table1). Only discriminating by the volcanic forc-
ing, this results in two sub-ensembles including, respectively,
BCC, IPSL, CCSM4 and GISS-R25 (using the data byGao
et al., 2008) and MPI-ESM, CSIRO and GISS-R24 (using
the Crowley data, see, for example,Crowley and Unterman,
2012). Here we exclude the FGOALS data as they do not
easily fit into these two categories but consider forcings as
presented byJones and Mann(2004) which are not explicitly
included in the PMIP3 protocol (see Table1 and Schmidt
et al., 2011). We refer to the ensembles as Gao ensemble and
Crowley ensemble.

The Crowley ensemble generally shows a smaller response
to the prescribed volcanic eruptions than the Gao ensemble
for interannual (Fig. S6) and decadal (Fig. S7) variations (cf.
1250s, 1450s, and 1810s). The Gao ensemble displays more
eruptions having an influence on the Northern Hemisphere
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mean temperature than the Crowley ensemble, which high-
lights the differences between the two volcanic reconstruc-
tions. The ranges of the ensembles (i.e. largest minus small-
est temperature anomaly for each date) are comparable for
the majority of dates (see Fig. S8). However, the range of the
Gao ensemble is larger than for the Crowley ensemble for
a number of cases. Whereas this is mainly due to the gen-
erally much weaker response to strong volcanic eruptions in
BCC, other individual simulations can differ strongly from
the three other members of the Gao ensemble at certain dates
(Figs. S6–S8). Thus, the different architectures of the mod-
els can result in differences between the simulations at least
as large as those induced by different volcanic forcing data
sets (see Fig. S8). That is, the implementation strategy for
the volcanic forcing data and the tuning of the model may in-
fluence the results as much as the choice of the forcing data
(see also discussions byFernández-Donado et al., 2013). We
note thatSchmidt et al.(2013) report for the GISS-R sim-
ulations and theGao et al.(2008) data a radiative forcing
twice as strong as expected. They attribute this fact to the
implementation of the volcanic forcing data in GISS-R. The
temperature responses to strong volcanic eruptions from the
GISS-R25 simulation considered here, which employs the
Gao et al.(2008) data, are among the largest in the multi-
model PMIP3-past1000 ensemble but generally not excep-
tional (see Fig. S6).

The representation of volcanic eruptions in simulations (as
well as their assessment in reconstructions) is a highly con-
troversial topic as seen in the ongoing discussions originating
from Mann et al.(2012, see alsoAnchukaitis et al., 2012).
Beyond discussions focused on the climate of the last mil-
lennium, Driscoll et al. (2012) report an apparent lack of
skill of the CMIP5 climate models in reproducing the ob-
served response to the well-constrained 20th century erup-
tions, possibly linked to a poor representation of relevant dy-
namical features. Considering the technical handling of vol-
canic forcing in climate simulations,Timmreck et al.(2009)
andTimmreck et al.(2010) highlighted the influence of the
parameterization of aerosol size on the magnitude of the im-
posed radiative forcing.Zanchettin et al.(2013b) showed, for
a well-constrained top-of-atmosphere radiative forcing, that
the simulated climate response to a strong volcanic eruption
can strongly vary depending on the background climate state,
which is defined by ongoing internal climate variability and
the presence and magnitude of additional external forcings
including their forcing history.

A number of possible additional and confounding fac-
tors may influence the proxies used to reconstruct the forc-
ing data and the temperature data (e.g. precipitation, cloudi-
ness, general circulation). Furthermore, it is possible that the
simulations do not fully capture the influence of the solar
forcing due to deficiencies in the representation of atmo-
spheric chemistry and to an only partially resolved strato-
sphere. Inconsistencies due to forcing uncertainties become
especially prominent prior to 1400 (e.g.Schurer et al., 2013).

Correlations may also be dominated by short-lived episodes
of large forcing, which are commonly featured by simula-
tions and reconstructions (cf.Schurer et al., 2013). How-
ever,Bothe et al.(2013) also showed that a larger agreement
and consistency closer to the present should not be expected.
Since the zonal means suggest similarities by filtering out
regional differences, one might hypothesize that the lack of
common signals between reconstructions and simulations at
the grid-point level is solely due to the internal and local vari-
ability masking it.

5 Summary and conclusions

The CMIP5/PMIP3-past1000 ensemble is not generally con-
sistent with the global temperature reconstructions byMann
et al.(2009) on a decadal timescale. This holds for the prob-
abilistic and the climatological assessments. Inconsistencies
between reconstructions and simulations prevent reconciling
both paleoclimate estimates. Our assessment of consistency
over the last millennium can be biased towards being too
optimistic if existing discrepancies between different multi-
centennial sub-periods counter-balance each other.

The simulations and the reconstruction agree the least in
the tropical Pacific and the sub-polar gyre region of the North
Atlantic according to our evaluation, while agreement is
largest in the sub-tropical Pacific and the South Atlantic. The
large-scale significant correlations for some individual sim-
ulations and the ensemble mean indicate that the reconstruc-
tion and the simulation ensemble possibly include a common
signal.

Robust conclusions require considering more than one
data set and more than one parameter due to the large uncer-
tainties. In this regard, the ensemble is also frequently over-
dispersive relative to independent area-averaged regional
and Northern Hemisphere mean temperature reconstructions.
However, the ensemble is probabilistically consistent with
the reconstructed annual temperatures for the North Amer-
ica Southwest (Wahl and Smerdon, 2012).

The PMIP3-past1000 multi-model ensemble and the
COSMOS-Mill single-model ensemble (Bothe et al., 2013)
give very similar results with respect to their consistency, al-
though differences exist for the diagnosed climatological de-
viations, which we attribute to different handling of volcanic
forcing data. So, multi-model and single-model ensembles
similarly lack consistency with the reconstructions. Thus, the
uncertainty due to structural differences and parametrizations
in the models does apparently not exceed the uncertainties
associated with different forcing and initial conditions.

The PMIP3-past1000 simulation ensemble and a selec-
tion of global and regional validation reconstruction targets
are often not exchangeable climatologically and probabilisti-
cally. Therefore they should not be regarded as representing
the same climate: they should not be compared under that
implicit assumption.
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These results imply the following:

1. The ensemble may be consistent with the verification
data for either the full or for sub-periods at the grid-
point level and for area-averaged data, but few data
show consistency on both timescales.

2. If consistency is diagnosed only for the full period, the
ensemble and the reconstruction display a comparable
amount of variability and a comparable climatological
range over this period, but the long-term trends differ
notably. We can also conclude that the variability dif-
fers between frequency bands. For example, the recon-
struction displays larger multi-centennial but smaller
decadal variability and vice versa. Furthermore, anal-
yses depending on the background climate are ham-
pered by the lack of sub-period consistency.

3. If, on the other hand, the data are consistent for a sub-
period, analyses on the dynamics may be valid over
this period, but not necessarily in other periods. Even
then we have to be careful since considering a differ-
ent reference period climatology may lead to different
results, and the background climate may influence our
assessment of the dynamics.

The deviations from consistency disclose the necessity for
improvements of simulated estimates, their reconstructed
forcing data and for climate reconstructions. The large un-
certainties render difficult any firm conclusions on past cli-
mate forcing and past climate variability (e.g.Hind et al.,
2012). The emerging continental-scale reconstructions of the
PAGES 2K consortium (e.g.Ahmed et al., 2013) offer op-
portunities for further application of the method to clarify
the (lack of) consistency between state-of-the-art reconstruc-
tions and the current generation of simulations.

Summarizing, probabilistic and climatological evaluations
indicate consistency of the PMIP3-past1000 simulation en-
semble with the reconstructions in some regions and over
certain sub-periods, but strong biases and/or dispersion devi-
ations arise in other regions and periods. This dominant fea-
ture of the analysis prevents reconciling the simulated and
reconstructed time series either with respect to a common
naturally forced climate signal or with respect to an estimate
of internal variability.

Supplementary material related to this article is
available online athttp://www.clim-past.net/9/2471/2013/
cp-9-2471-2013-supplement.pdf.
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