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Abstract. The scarcity of long instrumental records, uncer-
tainty in reconstructions, and insufficient skill in model simu-
lations hamper assessing how regional precipitation changed
over past centuries. Here, we use standardized precipitation
data to compare a regional climate simulation, reconstruc-
tions, and long observational records of seasonal (March to
July) mean precipitation in England and Wales over the past
350 years. The Standardized Precipitation Index is a valuable
tool for assessing agreement between the different sources
of information, as it allows for a comparison of the tempo-
ral evolution of percentiles of the precipitation distributions.
These evolutions are not consistent among reconstructions, a
regional simulation, and instrumental observations for severe
and extreme dry and wet conditions. The lack of consistency
between the different data sets may be due to the dominance
of internal climate variability over the impact of natural ex-
ogenous forcing conditions on multi-decadal timescales. The
disagreement between sources of information reduces our
confidence in inferences about the origins of hydroclimate
variability for small regions. However, it is encouraging that
there is still some agreement between a regional simulation
and observations. Our results emphasize the complexity of
hydroclimate changes during the recent centuries and stress
the necessity of a thorough understanding of the processes
affecting forced and unforced precipitation variability.

1 Introduction

Confidence in future climate projections of, e.g., drought and
wetness conditions requires an understanding of past climate
and hydroclimate variability and its drivers (e.g., Schmidt
et al., 2014). Focusing on the hydroclimate, estimates of past
and future changes are still highly uncertain for precipita-
tion at regional scales. Indeed, our understanding of inter-
nal, naturally forced, and anthropogenically forced variabil-
ity is weaker for precipitation than for temperature due to
the more complex controls on precipitation variability (e.g.,
Zhang et al., 2007; Hoerling et al., 2009; Iles et al., 2013;
Fischer et al., 2014) and the more local-scale nature of pre-
cipitation processes.

Consistency among estimates from early instrumen-
tal observations, paleo-reconstructions from environmental
archives (i.e., paleo-observations), and climate simulations
supports our understanding of past changes. It strengthens
our confidence in inferences if the sources of information
prove to be consistent. Here, consistency among estimates
simply means that various sources of information do not con-
tradict each other. Despite being a rather liberal metric, con-
sistency is an appropriate measure in view of the multiple
sources of uncertainty in inferring past hydroclimate and pre-
cipitation variability.

Here, we explore the consistency of observations, recon-
structions, and simulations for one small region and focus
only on precipitation changes. Specifically, we set out to
study the consistency in the statistical properties of precip-
itation distributions in these sources of information.

Comparing precipitation among different data sources
poses various challenges. Problems relate but are not lim-
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ited to pronounced biases in the simulated precipitation, es-
pecially derived from raw global models, and to differences
in representation or, in the case of fields of data, the spa-
tial resolution. In the context of long observational time se-
ries, data inhomogeneities due to changes in instrumentation,
measuring techniques, and changes in locations can further
influence estimates of longer-term trends (e.g., Frank et al.,
2007; Wilson et al., 2005; Böhm et al., 2010; Burt and How-
den, 2011; Craddock and Craddock, 1977). Reconstructions
likely represent only part of the variability spectrum of, e.g.,
precipitation, dependent on the strength of the climatic sig-
nal in the original data and on further shortcomings of the
underlying paleo-observations.

The PAGES Hydro2k Consortium (2017) discuss in more
detail the problems in comparing hydroclimatic variables be-
tween reconstructions and simulations. They developed rec-
ommendations for the comparison of hydroclimate represen-
tations in simulations and paleo-observations. They stress the
complementary nature of simulated and environmental infor-
mation considering their respective uncertainties. Estimates
have to represent the same parameters on related spatial and
temporal scales. Only then can a comparison be valid. We
need appropriate methods to bridge the gap between the lo-
cal or regional reconstruction and the simulation output that
represents aggregates over larger spatial scales. Proxy sys-
tem models are one means to achieve this (Evans et al., 2013;
PAGES Hydro2k Consortium, 2017).

Transforming precipitation estimates to the Standardized
Precipitation Index (SPI; McKee et al., 1993) facilitates the
comparison of different sources of information on precipita-
tion in view of the mentioned challenges. It provides a com-
mon basis for comparisons between different locations, peri-
ods, or seasons. The core of the SPI calculation is the fit of a
distribution function to the precipitation estimates. We argue
that the transformation of precipitation estimates to the SPI is
a simple means to compare the statistical properties of hydro-
climatic parameters in simulations and paleo-observations. It
is of value for periods with and without comprehensive sets
of climate and weather observations.

Previous usage of the SPI in paleoclimatology focused
on the index series (compare, e.g., Domínguez-Castro et al.,
2008; Seftigen et al., 2013) and did not consider further in-
formation available through the transformation. We apply the
SPI over moving windows of 51 years to study variations in
the properties of precipitation distributions on multi-decadal
timescales. We concentrate on a regional domain where all
sources of data, i.e., observations, reconstructions, and sim-
ulations, are available. By applying the SPI transformation
over moving windows, we are able to evaluate and compare
percentiles of the estimates as well as the moments of the
distributions and the temporal changes in these distributional
properties. We are essentially comparing sequences of clima-
tologies.

Long observationally based records allow us to assess how
the statistics of observed precipitation have changed over

the last couple of centuries. They, in turn, provide the basis
for evaluating how state-of-the art regional or global climate
model simulations and reconstructions for the Common Era
(CE) compare in domains colocated with the available ob-
servations. We choose southern Great Britain as our domain
of interest since there are precipitation observations avail-
able in the form of the England–Wales precipitation data
set (Alexander and Jones, 2000, for the period 1766 CE to
present), its subdivisions, and instrumental records for Ox-
ford (cf. Radcliffe), Pode Hole, and Kew Gardens. The in-
strumental records start in 1767, 1726, and 1697 CE, respec-
tively.

A number of precipitation reconstructions are available for
southern Great Britain. We choose the millennium-long tree-
ring-based data by Cooper et al. (2013) and Wilson et al.
(2013) for East Anglia and southern–central England, respec-
tively. We focus on an extended spring season (MAMJJ). The
next section discusses our decision to concentrate on these
data instead of the δ18O-based scaling approaches by Young
et al. (2015, covering the period 1766 to present) and Rinne
et al. (2013, reconstructed values from 1613 to 1893 CE).

Regional simulations for the last 500 to 2000 years are
rare. To our knowledge there are only two transient regional
simulations. Gómez-Navarro et al. (2015) compare one of
these simulations, with the model MM5, to reconstructions
for various parameters over larger regional domains within
Europe. For precipitation, they compare the simulation to the
gridded precipitation reconstructions of Pauling et al. (2006)
for western Europe, which is based on a set of dendroclima-
tological and other natural proxies and documentary infor-
mation. Gómez-Navarro et al. (2015) find rather good agree-
ment in the evolution of median precipitation amounts be-
tween the reconstruction and their regional simulation for a
domain including the British Isles and Ireland for the summer
season. The agreement is much weaker for the spring season.
They also emphasize model shortcomings and the lack of
agreement in the representations of extreme climate anoma-
lies. On the side of the reconstructions, Gómez-Navarro et al.
(2015) stress the inconsistencies among the reconstructions
of different parameters (i.e., temperature, precipitation, and
sea level pressure).

Here, we compare observations and paleo-observations
with each other. We additionally compare them to output
from a regional simulation with the model CCLM for the
European domain over the period 1645 to 1999 CE (compare
Gómez-Navarro et al., 2014; Bierstedt et al., 2016). Our com-
parison differs from Gómez-Navarro et al. (2015) by using a
different regional model, focusing on a smaller region, and
by using regional time series reconstructions instead of de-
riving records from gridded products. Moreover, our general
focus is on precipitation.

Our focus is also to motivate the use of the Standardized
Precipitation Index in hydroclimatic comparisons between
different data sets in paleoclimatology. We use the SPI to
study the consistency of the different sources of precipita-
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tion information for approximately the last 350 years. That
is, we are looking at how well the sources of information
compare among each other. This is a limited aim, which is
appropriate considering the various uncertainties, especially
in simulations and reconstructions, but also in observations.
We explicitly do not expect the simulation output to agree
with the instrumental and paleo-observation data on the mean
precipitation amount since spatial representations differ. We
also do not expect them to necessarily agree on decadal vari-
ations in precipitation because of the presence of internal
variability (e.g., Deser et al., 2012a, b; Swart et al., 2015)
potentially masking commonly forced external signals. Even
a large ensemble of simulations may not necessarily repre-
sent these variations (see, e.g., Annan and Hargreaves, 2011).
Since we transform precipitation to the Standardized Precip-
itation Index over moving windows, our analyses essentially
become comparisons between series of climatologies, thus
potentially filtering shorter-term internal variability.

In the following, we first introduce and discuss our choices
of data sets and methodology before comparing the data sets
and discussing the results. A document in the Supplement to
this paper provides additional analyses that are nonessential
for our conclusions.

2 Data

Hydroclimatic changes affect humans and the environment
mostly on the local and regional scale. Therefore, we focus
on small domains and use precipitation data. Precipitation is
a more tangible variable than, e.g., drought indicators like the
Palmer Drought Severity Index (PDSI).

We aim at describing how much agreement we can find
between different sources of information for precipitation in
a small domain over a period with limited instrumental data,
i.e., a period when we have to rely on reconstructions from
paleo-observations. Such an assessment helps to increase our
confidence in the estimates from the different sources of in-
formation. In turn, it also increases our understanding of past
hydroclimatic variability.

We use observationally derived data sets, reconstructions,
and simulation output in our main analyses. We use further
observationally derived records and instrumental station ob-
servations for assessing the quality of our main data sets. Ta-
ble 1 lists the sources of information. For all analyses, we
primarily use the spring–summer season from March to July
(MAMJJ).

Starting from the available regional climate simulation
(see below), we choose the region for our study based on the
availability of precipitation observation and reconstruction
data. There are long records of instrumental measurements
of climate parameters for a number of locations in Europe.
For southern Great Britain, there are observational regional
domain composite records for temperature and precipitation,
precipitation reconstructions, and long instrumental records.

2.1 Observations

The British Isles are unique because there are long
observation-based indices for precipitation and temperature
in the form of the England–Wales precipitation data (Alexan-
der and Jones, 2000) and the Central England Temperature
data (Parker et al., 1992). In addition, there are long instru-
mental station precipitation observations available, e.g., in
southern Great Britain, for Kew Gardens, Oxford, and Pode
Hole.

Alexander and Jones (2000, see also Wigley et al., 1984)
describe the England–Wales precipitation (EWP) data. It is
available from the Met Office Hadley Centre at monthly
resolution extending back to the year 1766. The Met Of-
fice Hadley Centre also provides subdivisions of the data.
We use those for southwest, southeast, and central England.
Alexander and Jones (2000) describe the automated method
of updating long precipitation series like the data by Wigley
et al. (1984) while also ensuring the homogeneity of the data.
Parker et al. (1992) similarly describe the production of the
Central England Temperature data and how to maintain qual-
ity control and homogeneity.

The central England and England–Wales observation in-
dices are good representations of the late 20th century cli-
mate of southern Great Britain according to Croxton et al.
(2006). Note that the composite series naturally rely on the
instrumental series.

The Climate Explorer (http://climexp.knmi.nl/, last access:
1 February 2019) provides access to a number of long se-
ries of monthly instrumental precipitation observations from
the Global Historical Climatology Network (Peterson and
Vose, 1997). We use those from Oxford, Kew Gardens, and
Pode Hole in addition to the observationally derived Met Of-
fice Hadley Centre data sets. The Climate Explorer provides
monthly data for these locations from 1697 to 1999, 1726 to
1994, and 1767 to 1999 CE, respectively. The later years in
the Oxford record include missing values and we therefore
only use data from 1767 to 1996 CE.

Frank et al. (2007) noted the uncertainties in early instru-
mental temperature observations. Additionally, the very early
Central England Temperature data include noninstrumental
indirect data to infer past temperature. Similarly, early pre-
cipitation observations require rigorous quality control (e.g.,
Burt and Howden, 2011). Woodley (1996) reviews the his-
tory of precipitation data for England and Wales as well as
Scotland.

2.2 Reconstructions

There are a number of gridded reconstructions of hydro-
climatic parameters covering the European domain. Conti-
nental domain gridded precipitation reconstructions include
Pauling et al. (2006), Casty et al. (2007), and Franke et al.
(2017). Reconstructions of drought indices like the PDSI ex-
ist as gridded products, too, for various regions of the world
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Table 1. List of data sets by region, parameter, type of data, period covered, season used, and source for obtaining the data.

Location or region Parameter Type Period CE Season Source

England–Wales Precipitation Observations 1766–2018 MAMJJ https://www.metoffice.gov.uk/hadobs/hadukp/
(last access: 1 February 2019)

Southwest England Precipitation Observations 1873–2018 MAMJJ https://www.metoffice.gov.uk/hadobs/hadukp/
(last access: 1 February 2019)

Southeast England Precipitation Observations 1873–2018 MAMJJ https://www.metoffice.gov.uk/hadobs/hadukp/
(last access: 1 February 2019)

Central England Precipitation Observations 1873–2018 MAMJJ https://www.metoffice.gov.uk/hadobs/hadukp/
(last access: 1 February 2019)

East Anglia Precipitation Reconstruction 900–2009 MAMJJ https://www.ncdc.noaa.gov/paleo-search/
study/12896
(last access: 1 February 2019)

Southern–central England Precipitation Reconstruction 950–2009 MAMJJ https://www.ncdc.noaa.gov/paleo-search/
study/12907
(last access: 1 February 2019)

Southern England Precipitation Reconstruction 1613–1893 MJJA Katja Rinne-Garmston, personal communica-
tion, 2018

United Kingdom δ18O Observations 1766–2012 JJA https://doi.org/10.1007/s00382-015-2559-4
Central England Temperature Observations 1659–2018 MAMJJ https://www.metoffice.gov.uk/hadobs/hadcet/

(last access: 1 February 2019)
Kew Gardens Precipitation Instrumental 1697–1999 MAMJJ https://climexp.knmi.nl/

(last access: 1 February 2019)
Pode Hole Precipitation Instrumental 1726–1994 MAMJJ https://climexp.knmi.nl/

(last access: 1 February 2019)
Oxford Precipitation Instrumental 1767–1996 MAMJJ https://climexp.knmi.nl/

(last access: 1 February 2019)
Europe Precipitation Regional climate 1645–1999 MAMJJ https://doi.org/10.6084/m9.figshare.5952025

model simulation
Europe Temperature Regional climate 1645–1999 MAMJJ https://doi.org/10.6084/m9.figshare.5952025

model simulation

including Europe (The Old World Drought Atlas; Cook et al.,
2015). These products allow for assessments of the quality
of the hydroclimate in paleoclimate simulations (Smerdon
et al., 2015).

We decide to use regional precipitation reconstructions for
our domain instead of gridded products to minimize the ef-
fect of the reconstruction method on the results. We focus on
precipitation as it allows for direct comparison with long in-
strumental records and it is a parameter directly experienced
by people.

To our knowledge, there are three precipitation reconstruc-
tions for small domains from southern Great Britain, i.e., ap-
proximately within the domain of the England–Wales precip-
itation and the Central England Temperature data. These are
for East Anglia (Cooper et al., 2013), for southern–central
England (Wilson et al., 2013), and the reconstruction for
southern England by Rinne et al. (2013). The former two
use tree-ring-width data for their reconstructions, and the lat-
ter uses tree-ring oxygen isotopes. There is additionally the
work by Young et al. (2015), who scale a δ18O composite
record from Great Britain to the England–Wales precipita-
tion.

In the main paper, we only use the data by Cooper et al.
(2013) and Wilson et al. (2013) for, respectively, East An-

glia and southern–central England in March, April, May,
June, and July (MAMJJ). Cooper et al. (2013) and Wilson
et al. (2013) identified this extended spring as the season to
which their tree-ring-width records are sensitive for their re-
constructions of precipitation. These authors calibrate their
tree-ring data against gridded precipitation beyond their tar-
get regions of southern–central England and East Anglia, re-
spectively. Thereby the reconstructions are possibly biased
beyond their respective regions of interest. They compare
their reconstructions against the long instrumental records
and find a lack of stability in relation to the instrumental data.
They discuss the limitations of their reconstructions, which
represent less than 40 % of the regional precipitation vari-
ance over the 20th century. Obviously, the reconstructions
suffer from the limited lengths of the available tree-ring sam-
ples. This may limit the resolution of precipitation variability
at low frequencies in the reconstructions.

Although the reconstructions show a notable amount
of low-frequency variability, Cooper et al. (2013) cau-
tion against too much confidence in the reconstructed low-
frequency precipitation variability. Cooper et al. (2013) ex-
plicitly call their work “preliminary” with respect to re-
constructing low-frequency precipitation variability. Wilson
et al. (2013) and Cooper et al. (2013) emphasize the weak-
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nesses of their reconstructions in representing extreme years.
On the other hand, both are confident in the middle to high
frequencies of their reconstructions.

The authors note variable relationships between tree
growth and environmental controls for their regions in the
past. Indeed, there are periods when the relationships be-
tween trees and precipitation are not significant. Wilson et al.
(2013) and Cooper et al. (2013) discuss the possibility that
the tree species used for their reconstructions were less sen-
sitive to precipitation over certain periods, e.g., the early 19th
century. That is, the proxies, theoretically representing a pre-
cipitation signal, also contain a temperature signal, for in-
stance, if they are sensitive to soil moisture. Wilson et al.
(2013) further suggest an effect of the Industrial Revolution
and the associated pollution on the trees in their selection.
Wilson et al. (2013) also discuss the reliability of the instru-
mental data but conclude this is likely not an issue.

The works by Rinne et al. (2013) and Young et al. (2015)
use their δ18O data to reconstruct precipitation for southern
England and Great Britain, respectively. We shortly discuss
results for both reconstructions below and give some more
details in the document in the Supplement.

Rinne et al. (2013) calibrate and scale their local isotope
data from 1613 to 1893 CE against the station observations
from Oxford for the period 1815 to 1893 CE and concatenate
the reconstruction with the observations for 1894 to 2003 CE.
They target an extended summer season from May to August.

Young et al. (2015) use the England–Wales summer (June
to August) precipitation as a scaling target for a composite of
eight isotope records from Scotland, Wales, and England for
the period 1766 to 2012 CE. They provide the input series as
a supplement to their paper.

Both publications by Rinne et al. (2013) and Young et al.
(2015) note the differences of their scaled δ18O data to the
tree-ring-width-based works by Wilson et al. (2013) and
Cooper et al. (2013). Young et al. (2015) emphasize that
the extended spring reconstructions are basically unrelated
to the δ18O data. Young et al. (2015) conclude that these dif-
ferences make it unlikely that the tree-ring-based works and
their δ18O-based work represent the same environmental pa-
rameter. They highlight the lack of a calibration against re-
gional precipitation data. Young et al. (2015) conclude that
their own data reliably reflect precipitation, while the tree-
ring widths most likely represent the combination of various
environmental influences on tree growth instead of a single
climate parameter.

Despite the conclusions of Young et al. (2015) we decide
to focus in the main paper on the two tree-ring-width-based
records by Cooper et al. (2013) and Wilson et al. (2013). The
main reason for excluding the Rinne et al. record is that it
concatenates instrumental data from the Radcliffe (cf. Ox-
ford) station for 1894 to 2003 to the reconstructed values
from 1613 until 1893. This reduces the time of overlap with
the England–Wales precipitation data.

We do not focus on the data by Young et al. (2015) for
two reasons. Firstly, the authors do not provide the full re-
construction, and, secondly, the data start at the earliest in
1766 CE, which again minimizes the period available for
comparing to the simulation data.

We think the focus on the tree-ring-width-based recon-
structions is appropriate to present the possibilities of using
the SPI and to highlight potential consistencies and incon-
sistencies between the different data sources. In the follow-
ing, we compare the two reconstructions for southern Great
Britain with the England–Wales precipitation observations.

2.3 Simulations

We compare the observations and the reconstructions to out-
put from a regional simulation with the model CCLM for the
European domain over the period 1645 to 1999 as also used
by Gómez-Navarro et al. (2014) and Bierstedt et al. (2016).
We use output from 1652 onwards (Gómez-Navarro et al.,
2014). To our knowledge, this simulation is one of only two
transient regional simulations for this region and the last few
centuries.

Forcing for the regional simulation is from a global sim-
ulation with the Max Planck Institute Earth System Model
(MPI-ESM) in its Millennium simulation COSMOS setup.
For details, see Jungclaus et al. (2010). This version of
MPI-ESM couples the atmosphere model ECHAM5, the
ocean model MPI-OM, a land-surface module including
vegetation (JSBACH), a module for ocean biogeochemistry
(HAMOCC), and an interactive carbon cycle. For the simula-
tion, ECHAM5 was run with a T31 horizontal resolution and
with 19 vertical levels. MPI-OM used a variable resolution
between 22 and 250 km on a conformal grid for this simula-
tion. The ensemble used diverse forcings. The driving sim-
ulation for the regional simulation with CCLM is one MPI-
ESM simulation with all external forcings and a reconstruc-
tion of solar activity based on Bard et al. (2000), i.e., with a
comparatively large amplitude of solar variability.

The regional climate model CCLM simulation (Sebas-
tian Wagner, personal communication, 2014, 2015, 2018; see
also Gómez-Navarro et al., 2014; Bierstedt et al., 2016) uses
adjusted forcing fields relevant for paleoclimate simulations
as also used with the global MPI-ESM simulation. These in-
clude orbital forcing and solar and volcanic activity. Since
the regional model does not represent the stratosphere, the
regional simulation considers the effect of volcanic aerosols
as a reduction in solar constant equivalent to the net solar
shortwave radiation at the top of the troposphere in MPI-
ESM. CO2 variability is prescribed and changes in the green-
house gases CO2, CH4, and N2O are based on data by Flück-
iger et al. (2002). Land-cover changes are included as exter-
nal lower boundary forcing using the same data set as the
MPI-ESM simulation (Pongratz et al., 2008). The presented
CCLM simulation uses a rotated grid with a horizontal res-
olution of 0.44 by 0.44◦ and 32 vertical levels. The sponge
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zone of seven grid points at each domain border is removed
and fields are interpolated onto a regular horizontal grid of
0.5 by 0.5◦.

We choose the domain including grid points closest to the
longitudinal and latitudinal borders 5.5◦ W to 1.5◦ E and 50.5
to 54.5◦ N to represent the England and Wales precipitation
domain. This selection is somewhat arbitrary but we assume
it sufficiently represents the England–Wales precipitation do-
main to allow for a meaningful comparison of changes in
percentiles, although not in absolute percentile values. We
choose the domain 5 to 0◦ W and 50 to 55◦ N as the simu-
lated counterpart of the Central England Temperature data.
The simulated East Anglia series represents the domain 0
to 2◦ E and 52 to 53◦ N, and we choose the domain 2.5◦ W
to 0◦ E and 51 to 52.5◦ N as equivalent for southern–central
England. All analyses are for the extended spring season,
MAMJJ, since this is the seasonal focus of the reconstruc-
tions. The Appendix provides a short evaluation of the sim-
ulation against the observational CRU data (Harris et al.,
2014) over the European domain. We do not apply any bias
correction to the simulation output.

So far, global simulations for the last millennium have no-
tably coarser resolutions than the 0.44 by 0.44◦ of the re-
gional simulation we use here (compare, e.g., Fernández-
Donado et al., 2013; PAGES 2k-PMIP3 Group, 2015). How-
ever, in contrast to present-day and future scenario regional
simulations, a 0.44 by 0.44◦ resolution represents a compara-
tively coarse-resolution dynamical downscaling. As a review
by Ludwig et al. (2018, including two of the present authors)
highlights, this is because the demand for long simulation
periods limits applications of regional models in paleoclima-
tology to relatively coarse setups. Thus, one may question
the benefits of the approach compared to more recent higher-
resolution global simulations, e.g., with the global models
CCSM4 and CESM1 (Landrum et al., 2012; Lehner et al.,
2015), which have resolutions of 0.9◦

× 1.25◦.
Sørland et al. (2018) discuss the benefits of regional cli-

mate simulations in studies on regional climates. Besides
other models, they also use CCLM in a 50 km setup compara-
ble to the simulation used here. They note that improved rep-
resentation of regional climate in a regional simulation is not
solely due to the increased resolution but may also be due to
different strategies in model building and tuning. Pinto et al.
(2018) explain differences in results from regional, including
CCLM, and global simulations for southern Africa with an
interplay between the representation of sub-grid-scale pro-
cesses in the different models and factors related to the in-
creased resolution.

Blenkinsop and Fowler (2007) find that regional climate
models may be deficient in their ability to model persistent
low precipitation episodes for the British Isles, which has
repercussions for their representation of drought events. The
review by Ludwig et al. (2018) reports more realistic dis-
tributions for precipitation in regional paleoclimate simula-
tions.

Flato et al. (2013, chapter 9 of the IPCC AR5) review the
progress of regional downscaling and high-resolution model-
ing. They emphasize that the skill of such exercises depends
on the model used, the season, the domain of interest, and
the considered meteorological variable. They highlight stud-
ies showing that there is not a linear increase in simulation
skill towards higher resolutions. Higher resolutions typically
provide more reliable estimates of extremes, including heavy
rainfall.

The quality of the simulated precipitation still strongly de-
pends on the parameterizations implemented in the regional
climate model. Precipitation, especially convective precipi-
tation events, is still a sub-grid process, even within regional
climate models. Concentrating on accumulated amounts on
seasonal timescales and their long-term changes, however,
allows for a more robust comparison of simulated precipita-
tion to observed and reconstructed data.

3 Methods

One objective of this paper is to highlight how the concept
of the Standardized Precipitation Index (SPI; McKee et al.,
1993) adds additional perspectives when comparing various
sources of information for periods with and without instru-
mental observations. Therefore, we shortly introduce the SPI
transformation procedure and how we use this information to
subsequently compare precipitation estimates from observa-
tions, reconstructions, and a regional climate simulation.

3.1 The Standardized Precipitation Index – SPI

Standardizing precipitation data facilitates comparing
precipitation distributions between different locations,
timescales, periods, and data sources. For this purpose, Mc-
Kee et al. (1993) introduced the Standardized Precipitation
Index (SPI).

The Interregional Workshop on Indices and Early Warning
Systems for Drought proposed the SPI as a common index to
facilitate comparability between meteorological drought es-
timates for different regions (see also Keyantash et al., 2002;
Hayes et al., 2011). The SPI should complement previously
used indices.

Raible et al. (2017) find the SPI to be a reliable drought
index for western Europe including the British Isles. The
standardization inherent to the SPI allows for further appli-
cations, e.g., flood monitoring (Seiler et al., 2002), and the
easy comparison of normal, dry, and wet conditions between
different sources of data. Indeed, the UK drought portal
(https://eip.ceh.ac.uk/droughts, last access: 1 February 2019)
relies on the SPI. Sienz et al. (2012) discuss associated biases
of the approach.

The SPI uses only precipitation, which makes it an ideal
and relatively straightforward tool for comparing hydrocli-
matic data between different data sources. Precipitation is a
standard output of simulations and there are long instrumen-
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tal records for various locations and a number of reconstruc-
tions as well.

However, as the SPI uses only precipitation, it is of less
value when the interest is in, e.g., the water supply, runoff, or
streamflow (but see Seiler et al., 2002). The focus on precip-
itation also limits the applicability for studying temperature-
sensitive parts of the hydrological cycle and impacts on bi-
ological and anthropogenic systems (e.g., PAGES Hydro2k
Consortium, 2017; Keyantash et al., 2002; Hayes et al., 2011;
Van Loon, 2015).

Previous usage of the SPI in paleoclimatology focused
on the index series. For example, Domínguez-Castro et al.
(2008) and Machado et al. (2011) compare SPI series to dif-
ferently derived hydroclimatic indices over approximately
the last 500 years. Other studies reconstructed the SPI in-
stead of absolute precipitation amounts (e.g., Seftigen et al.,
2013; Yadav et al., 2015; Tejedor et al., 2016; Klippel et al.,
2018). Lehner et al. (2012) use the SPI to compute pseudo-
proxies from reanalysis data and long simulations with global
climate models to test a reconstruction method.

3.1.1 Transformation

The SPI requires fitting a distribution function to the pre-
cipitation data and there are various candidate distributions
(e.g., Sienz et al., 2012; Stagge et al., 2015, and their refer-
ences). In our analyses, we fit a Weibull distribution. Sienz
et al. (2012) highlighted the fact that the Weibull distribution
performed better in transforming the England–Wales precip-
itation data on a monthly timescale compared to a number
of other distributions. However, other distributions outper-
formed the Weibull distribution for other data sets and other
SPI timescales. Results differ only little if we fit gamma or
generalized gamma distributions (not shown). Our procedure
of the SPI calculation follows the detailed description by
Sienz et al. (2012).

McKee et al. (1993) recommend at least 30 data points for
successful distribution fits, but Guttman (1994) notes the lack
of stability for small sample sizes. We fit distributions over
sliding 51-year windows. Thus, we use more data points than
recommended by McKee et al. (1993) but still fewer than
the 60 points for which Guttman (1994) finds convergence
of higher-order L moments. Appendix Fig. B1 shows 95 %
intervals of a bootstrap procedure sampling 40 data points
1000 times from each window and fitting distributions to
these samples. The choice of 40 data points is an ad hoc de-
cision. We could have also chosen sample sizes of 49 data
points.

3.1.2 Evaluation

Standardizing precipitation data can at least attenuate some
of the problems mentioned in the Introduction. Transforming
precipitation to standardized values provides further means

to study the agreement or the lack thereof between different
data sources.

By transforming to the SPI over moving windows, we es-
sentially compare climatologies and potentially filter shorter-
term internal variability. If the climatology for the obser-
vations is the target climatology, an ensemble of climate
simulations should sample this distribution following the
paradigm of a statistically indistinguishable ensemble (An-
nan and Hargreaves, 2011). Our analyses compare how well
the climatologies agree in different sources of data.

One particular interest is to consider to what extent the
different data sources describe comparable evolutions in var-
ious percentiles, e.g., representing extremes. The SPI trans-
formation simplifies this. If the transformation over moving
windows filters a certain amount of internal variability, if
boundary and forcing conditions are sufficiently equivalent
in the simulation compared to the observed climate, and if
simulated precipitation and the observed climate react equiv-
alently to these conditions, precipitation distributions and
their properties may change consistently between different
sources of information. The results of Gómez-Navarro et al.
(2015) give some indications that this expectation may be
warranted. In the worst case, our analyses can point out that
one of the data sources contradicts the others.

For any given window, the fitted distribution parameters
allow for the calculation of various properties. For example,
we can consider the changing amount of precipitation, which
one would describe as average, extremely high, or extremely
low for subsequent periods. In the SPI literature, percentiles
6.7 and 93.3 traditionally represent the regions of severe (and
extreme) dryness and wetness of the probability density func-
tion. Accordingly, we subsequently compare percentiles 6.7
and 93.3 for the fitted distributions over time. Further, we
can compare the moments of the distributions. We choose to
show the square root of the Weibull distribution variance, i.e.,
the Weibull standard deviation over sliding windows. This
provides an additional clarification of how the precipitation
distribution changes over time. Appendix C shows parame-
ters for the distribution fits.

The fitted parameters allow for further analyses; e.g., we
can compare how likely a reference amount of precipitation
is for different periods. We do this for percentiles 50, 6.7,
and 93.3 in a reference year. We choose 1815 CE as the ref-
erence year, since it is included in all data sets and it allows
for potentially equivalent analyses of the PMIP3 past1000
simulations (e.g., Schmidt et al., 2011).

3.2 Smoothing

Performing the transformation to standardized precipitation
over 51-year windows results in smoothed estimates. For
convenience, we additionally plot smoothed time series in a
number of figures. Filtered series are solely used for visual-
ization.
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We use a Hamming window. In most cases, this has a
length of 51 points but we also occasionally use different
window lengths. The 51-point Hamming filter represents a
different frequency cutoff than a simple 51-year moving me-
dian or moving mean as can be obtained from fitting the dis-
tributions over 51-year moving windows.

4 Results

4.1 Relations among data sets

4.1.1 Observational data and reconstructions

Figure 1 provides a first impression of the observational and
reconstruction data we use in the following sections. All se-
ries are for the extended spring season from March to July
on which we focus. Panels show 31-point Hamming-filtered
time series. These allow for a better qualitative assessment of
the commonalities between the data sets and the differences
compared to, e.g., 11-point or 51-point Hamming-filtered
time series, which have too much high-frequency variability
or are too smoothed, respectively.

Observational precipitation series from the Met Office
Hadley Centre for southwest, southeast, central England,
and England–Wales show high agreement in their variations
on these timescales for the period of overlap (see Fig. 1a,
particularly the period 1890 to approximately 1980). The
instrumental time series for Kew Gardens and Pode Hole
show more disagreement in certain periods for the considered
smoothing; i.e., they even evolve oppositely at certain times,
e.g., the mid-19th and mid-20th centuries (see Fig. 1b). The
instrumental data for Oxford appear to agree better with the
data for Kew Gardens, which is to be expected from the ge-
ographic locations of the stations. Visually, both reconstruc-
tions agree less well with the observational series and with
each other than the agreement amongst the observational data
(see Fig. 1c). This holds for their variations and their overall
level of variability. Figure 1d adds the Central England Tem-
perature data for MAMJJ for completeness.

Correlation matrices (Fig. 2 and the Supplement) and scat-
terplots (see the Supplement) emphasize the differing agree-
ment between the various data sources even more clearly.
Figure 2 presents the correlation matrix for complete obser-
vations, i.e., for the period 1873 to 1994 when all records
have data. Correlation coefficients change slightly if we con-
sider pairwise complete records. Relations among precipita-
tion data sets are always positive. They are very strong be-
tween the England–Wales data and its subdivisions, between
the Kew Gardens series and the southeast England data, be-
tween the Pode Hole series and the central England data, and
between the Oxford record and the southeast England data
as well as the England–Wales precipitation. The relationship
between the two reconstructions is also rather strong over the
subperiod. Correlations are, however, weaker between the re-
constructions and the observed series.

Figure 1. Visualization of the observation-based records for the ex-
tended spring season March to July (MAMJJ). We show 31-point
Hamming-filtered time series for (a) the Met Office Hadley Centre
observational precipitation series for England–Wales (EWP), south-
west (SWE), southeast (SEE), and central England (CEP), (b) the
instrumental precipitation series for Pode Hole (Pod), Kew Gar-
dens (Kew), and Oxford (Oxf), (c) the precipitation reconstruc-
tions for East Anglia (EAr) and southern–central England (SCEr),
and (d) the Central England Temperature (CET) data.

There is a generally negative relationship between the
Central England Temperature and the precipitation data sets
for the chosen extended spring season from March to July.
It is weakest for the southern–central England reconstruction
but also rather weak for the East Anglia reconstruction and
the southwest England record from the Met Office Hadley
Centre. Scatterplots emphasize that even the temperature–
precipitation relations with larger correlations scatter widely
(not shown). Temperature relations are stronger for the ob-
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Figure 2. Correlation matrix for complete correlations between
the observation- or paleo-observation-based data sets Central Eng-
land Temperature (CET), East Anglia precipitation reconstruc-
tion (EAr), southern–central England precipitation reconstruction
(SCEr), England–Wales precipitation (EWP), southwest England
precipitation (SWE), southeast England precipitation (SEE), central
England precipitation (CEP), Pode Hole precipitation (Pod), Kew
Gardens precipitation (Kew), and Oxford precipitation (Oxf). Com-
plete correlations mean that we only use the years 1873 to 1994 for
which all records have data. The season for all records is MAMJJ.

servationally based data from the Met Office Hadley Centre
and the instrumental series for the summer season June to
August (not shown).

Correlations for nonoverlapping 11-year averages are pos-
itive and strongest between the England–Wales precipitation
and the two instrumental series (not shown; see the Supple-
ment; calculated for the period 1767 to 1986). This anal-
ysis also gives reasonable correlations (r ≈ 0.51) between
the pair of reconstructions and between the instrumental se-
ries. Otherwise, correlations are weak. Correlations for the
extended spring season with the Central England Tempera-
ture data are largest for the nonoverlapping 11-year averages
of the Kew Gardens instrumental series. We choose 11-year
nonoverlapping windows to balance the number of available
data points and the filtering of interannual variability.

4.1.2 (Paleo-)observational data and regional simulation
output

Figure 3 presents the two reconstructions and the England–
Wales precipitation in comparison to the respective data from
the regional simulation. All data are again for the extended
spring season from March to July (MAMJJ), and the pan-
els zoom in on the period of the regional simulation. We
show the interannual time series and the 51-point Hamming-
filtered representation.

Figure 3. Extended spring (MAMJJ) precipitation in
(paleo-)observation-based data and simulation output, (a) East
Anglia precipitation in reconstruction (black) and regional model
(blue), (b) southern–central England precipitation in reconstruc-
tions (black) and regional simulation (blue), and (c) England–Wales
precipitation in observational data (black) and regional simulation
(blue). We show interannual data (light colors) and 51-point
Hamming-filtered data (solid colored).

Considering the evolution of the records, the 51-point
Hamming-filtered time series show pronounced differences
besides some common features for the reconstructions for
southern–central England (Wilson et al., 2013) and East An-
glia (Cooper et al., 2013) (black lines in Fig. 3a and b) similar
to the representations in Fig. 1. Both reconstructions feature
a relative precipitation minimum centered on approximately
the year 1800. The southern–central England reconstruction
additionally displays a relative minimum in the early 20th
century.

The observed England–Wales precipitation is available
at monthly resolution from the year 1766 onward. The
Hamming-filtered time series shows markedly less multi-
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decadal to centennial variability compared to the reconstruc-
tions, but the observations have much more interannual vari-
ability than the reconstruction for East Anglia and slightly
more variability than the reconstruction for southern–central
England (Fig. 3c, black line). The filtered England–Wales
time series also displays a slightly negative trend.

Differences between the simulated regional records are
generally smaller (blue lines in Fig. 3). Existing differ-
ences highlight the spatial heterogeneity of precipitation,
e.g., interannual pairwise correlation coefficients are about
0.9 between the simulated East Anglia data and the other
two records, while the simulated England–Wales precipi-
tation correlates at approximately 0.97 with the simulated
southern–central England data. Absolute interannual precipi-
tation differences among the three data sets are at a maximum
of approximately 151 mm season−1 (not shown). A general
feature for all regions is that the excursions of the filtered
simulation output are often, but not always, opposite to those
of the reconstructions or observation time series.

There is an obvious bias in the absolute amounts between
the simulation output and the other data sets. The simulation
output series give larger precipitation amounts. We do not try
to attribute this difference. We note that it is not as prominent
for the more local comparison with the data from Rinne et al.
(2013) for May to August and the bias is generally slightly
negative for the summer season June to August for England–
Wales precipitation (not shown; see the Supplement). We as-
sume that the differing spatial representations sufficiently ex-
plain the mismatch. However, the change of sign in the bias
for the summer season suggests that the simulation overes-
timates spring precipitation, underestimates summer precip-
itation, and the positive spring bias is larger than the neg-
ative summer bias. See also Appendix A for a comparison
of the simulation to observational data over the full Euro-
pean model domain. Figure 3 shows a common feature for all
three comparisons. Simulated records appear to show oppo-
site evolutions compared to the (paleo-)observations overall
but particularly in the late 18th to early 19th century and in
the early to mid-20th century.

This initial comparison already shows varying levels of
agreement for the chosen data sets derived from observations
and the reconstructions. It highlights the fact that the relation-
ships between the reconstructions and the observational data
sets are weaker than between the instrumental data and the
observational indices on interannual timescales. Note that the
regional observational indices include information from the
instrumental data. On longer timescales the reconstructions
align less well among each other than the observationally de-
rived time series. However, the local, purely instrumental se-
ries also show more disagreement among each other than the
derived larger-domain products. Filtered regional time series
often evolve visually oppositely in the simulation compared
to the reconstructions and the observations.

Figure 4. Visualization of the MAMJJ precipitation amount iden-
tified as severely wet (percentile 93.3) over 51-year windows for
England–Wales (green solid lines), southern–central England (blue
dashed lines), and East Anglia (black dash-dotted lines) in (a) re-
constructions, observations, and (b) simulations.

So far, we used the precipitation and temperature data. In
the following, we mainly use the information obtained via
the transformation to standardized precipitation indices.

4.2 Comparing standardized precipitation data

Figures 4 to 6 add, respectively, the comparisons of the wet
(i.e., 93.3) percentile, the dry (i.e., 6.7) percentile, and the
square root of the Weibull distribution variance to the com-
parison of the interannual and filtered time series in the pre-
vious section.

4.2.1 Observations vs. reconstructions

Since they represent different regions, we do not expect
agreement in the absolute precipitation amounts represent-
ing wet conditions between the England–Wales precipitation
data and the reconstructions in Fig. 4a. We note that the dif-
ference between the wet percentile for the England–Wales
precipitation and the reconstructions is larger than for the av-
erage amounts, indicating a wider distribution for the data
based on instrumental observations. Precipitation histograms
confirm this (not shown). On the other hand, differences are
smaller for the dry percentile (Fig. 5). Nevertheless, this is a
sign that the reconstructions underestimate the width of the
precipitation distributions of 51-year window climatologies.

Reconstructed and observation-based time series show a
slightly opposite trend for the wet percentile over much of
the period of their overlap (Fig. 4) from the second half of
the 18th century to the mid-20th century. Smaller-amplitude
variations in the beginning of the wet percentile series are
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Figure 5. Visualization of the MAMJJ precipitation amount iden-
tified as severely dry (percentile 6.7) over 51-year windows for
England–Wales (green solid lines), southern–central England (blue
dashed lines), and East Anglia (black dash-dotted lines) in (a) re-
constructions, observations, and (b) simulations.

also opposite. The dry percentile series do not have a long-
term trend but multi-decadal variations evolve oppositely be-
tween reconstructed and observed dry percentiles from the
end of the 18th century to the early 20th century (Fig. 5).

The opposite trends in the wet percentiles mean that the
wet percentile represents lower precipitation amounts in the
middle of the 20th century compared to the late 18th cen-
tury, while the reconstructed wet percentile represents larger
precipitation amounts in the middle of the 20th century com-
pared to the late 18th century (Fig. 4). Similarly, the oppo-
site multi-decadal variability in the dry percentiles of recon-
structions and observations means that when the reconstruc-
tions represent a drying of the dry percentiles, the observa-
tions indicate the opposite and vice versa (Fig. 5). Generally,
the series for the severe to extreme dryness and wetness per-
centiles reflect the smoothed evolution of the respective data
set before transformation into a distributional form (compare
Fig. 3).

We note that the data from Rinne et al. (2013) for southern
England in summer display an apparent opposite evolution
of wet percentiles for the period of overlap between recon-
structions and observations from the late 18th to the late 19th
century. On the other hand, dry percentiles agree well over
this period (not shown; see the Supplement).

Parameters for the fitted distributions also allow us to
evaluate the moments of the distributions. Estimates for the
Weibull standard deviations (SDs in Fig. 6) differ between
observations and reconstructions as expected from the previ-
ously noted differences in percentiles. The reconstruction for
East Anglia does not show a clear evolution in the Weibull
standard deviations, whereas there is an increasing trend in

Figure 6. Visualization of Weibull standard deviations (SDs) over
51-year windows for MAMJJ precipitation for England–Wales
(green solid lines), southern–central England (blue dashed lines),
and East Anglia (black dash-dotted lines) in (a) reconstructions, ob-
servations, and (b) simulations.

the Weibull standard deviations for the southern–central Eng-
land data. The observations show a slight reduction in the
standard deviation until the middle of the 20th century, with
a strong increase afterwards.

4.2.2 Simulation output

The simulated time series in Fig. 3 show large similarities
between regions. This is also the case for the wet and dry
percentiles as well as for the standard deviations. Indeed, the
respective statistics evolve simultaneously among the differ-
ent regions, and the standard deviations overlap (Figs. 4 to 6).

Thus, differences between regional domains are smaller
for their simulated representations compared to the observed
or reconstructed records. They are slightly more notable for
the moving window statistics compared to the Hamming-
filtered series. Dry percentiles are very similar for East An-
glia and southern–central England in the simulation but wet
conditions require larger precipitation amounts for southern–
central compared to East Anglia. Appendix B highlights the
fact that this may be due to sampling variability. Smoothed
simulated data and wetness percentiles evolve similarly, but
opposite evolutions of the dryness and wetness percentiles
result in widening and shrinking of the distributions after ap-
proximately the year 1800.

4.2.3 Simulation output vs. observationally derived data
and reconstructions

Simulations and reconstructions do not agree on the time
evolution of precipitation percentiles (Figs. 4 to 6). Any hint
of an agreement between reconstructed and simulated data is
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likely due to randomness (compare Fig. 4). There is instead a
tendency towards opposite time evolutions between the data
sources. This is best seen in the dry percentiles from the mid-
18th to mid-20th century (Fig. 5).

This apparent opposite evolution is the most common fea-
ture when comparing percentiles derived from the simulation
and from the reconstructions. When the percentile series for
the reconstructions show minima, the simulation commonly
shows maxima and vice versa. Obviously, using an ensemble
of regional simulations would show a range of trajectories.
Therefore, these results do not preclude the possibility that
the model is capturing basic physical characteristics of pre-
cipitation variability in northwestern Europe.

The smoothed representations of the simulation output and
the smoothed observed England–Wales precipitation show
only small multi-decadal variations, which appear to be more
or less in opposition (Fig. 3). The wet percentiles do not
show any agreement although they both have a relative max-
imum in the late 18th century (Fig. 4). On the other hand,
the dry percentiles show approximate agreement in their evo-
lutions over the full time period of their overlap. Particu-
larly noteworthy are the approximately concurrent maxima
in the early 19th century and in the middle of the 20th
century (Fig. 5). Similarly, the Weibull standard deviations
show some commonalities between the simulated representa-
tion of the England–Wales precipitation and the observations
(Fig. 6) over the full period of their overlap.

We note that there is neither any clear commonality nor
any overly opposite evolution in the dry percentiles when
comparing the regional simulation to the reconstruction for
southern England summer precipitation by Rinne et al.
(2013, not shown; see the Supplement). The wet percentiles,
however, evolve oppositely in the 18th century but then show
a common positive trend in the 19th century (not shown; see
the Supplement).

Figure B1 provides uncertainty estimates for part of our
analyses. The figure shows 95 % intervals of a bootstrap
procedure sampling 40 data points 1000 times from the
time windows and fitting distributions to these samples. The
choice of 40 data points is an ad hoc decision that lies
between the recommendation by McKee et al. (1993) of
30 samples and our window length of 51 years. Uncertainty
on the fitted distributions varies in size over time and between
data sets. Indeed, there are periods when sampling variability
is so large that apparent differences in distributional proper-
ties between periods are not significant for most sources of
information.

4.3 Changes in probability of certain precipitation
amounts

In the Methods section, we describe the procedure for cal-
culating standardized precipitation indices over moving time
windows. We obtain a distribution fit for each time window.
The parameters of the fit for a window allow us to identify

Figure 7. Visualization of how percentile values change over win-
dows. We show what the percentile 93.3 MAMJJ precipitation
amount for a reference window represents over time for England–
Wales (green solid lines), southern–central England (blue dashed
lines), and East Anglia (black dash-dotted lines) in (a) reconstruc-
tions, observations, and (b) simulations. The reference window is
centered on 1815 CE.

the probability of a precipitation amount for the respective
window. Figures 7 to 9 present changes in the probability of
certain amounts of precipitation; i.e., lines are the changing
percentiles represented by a given amount of precipitation
over time. The figures show these changes for the precipita-
tion amounts representing percentiles 93.3, 50, and 6.7, re-
spectively, in a reference window. For this comparison, the
reference is the distribution of precipitation in the window
centered around the year 1815 CE. The year 1815 CE is in-
cluded in all data sets and it allows for equivalent analyses of
the PMIP3 past1000 simulations (e.g., Schmidt et al., 2011).
We estimate and plot the percentiles that correspond to these
reference precipitation amounts in other time windows.

The England–Wales precipitation shows a slight increase
over time in the reference percentile 93.3 in the year 1815 CE
(Fig. 7a). Recently, there has been a steep decrease in the
series. Similarly, the 50th percentile for 1815 CE represents
slightly larger percentiles over time (Fig. 8a). On the other
hand, there are weak multi-decadal variations in the series
for percentile 6.7 in the observations, and percentile 6.7 from
1815 CE may become slightly less likely over time (Fig. 9a).

Before turning to the reconstructions, we shortly note that
the simulations show similar trajectories for all three per-
centile values and all three regions. There are not any obvi-
ous trends, but the series show multi-decadal variations. The
window centered on the year 1815 CE falls within a mini-
mum or at the end of a minimum. The respective precipita-
tion amount generally represents larger percentiles before the
time window centered on 1815 CE. After this time window,
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Figure 8. Visualization of how percentile values change over win-
dows. We show what the 50th percentile MAMJJ precipitation
amount for a reference window represents over time for England–
Wales (green solid lines), southern–central England (blue dashed
lines), and East Anglia (black dash-dotted lines) in (a) reconstruc-
tions, observations, and (b) simulations. The reference window is
centered on 1815 CE.

percentiles 6.7 and 93.3 both approach a maximum in the
series (Figs. 7b and 9b). However, percentile 93.3 reaches it
about the year 1850 CE and the percentile 6.7 only in approx-
imately the year 1900 CE, when percentile 93.3 is again in a
relative minimum. Thus, the wet and dry percentiles evolve
oppositely from the early 19th century onwards; i.e., the dis-
tribution widens and shrinks since approximately the year
1850 CE. The amount of precipitation, which represents me-
dian values for the reference year 1815 CE, is representative
of larger percentiles in later years (Fig. 8b). However, there
is a slight decreasing trend from approximately the mid-19th
century to the end of the simulation (Fig. 8b).

The reconstructions for East Anglia and southern–central
England have some peculiar features (Figs. 7a to 9a). For
one, it is not ideal to choose a reference year from the pe-
riod around 1800 CE. Percentile 6.7 in 1815 CE is much less
likely earlier and later in both regions (Fig. 9a). Similarly,
average precipitation around 1815 CE represents approxi-
mately the 20th percentiles in earlier and later periods for
East Anglia (Fig. 8a) but also represents much smaller per-
centiles in later periods for southern–central England. Severe
and extreme wet conditions from this period may even repre-
sent long-term average conditions for East Anglia (Fig. 7a).
We note that comparisons to the data by Rinne et al. (2013)
do not feature such peculiarities (not shown), but using a sim-
ple scaling approach for the δ18O data from Young et al.
(2015) gives similar results (not shown, but compare infor-
mation given in the Supplement).

Figure 9. Visualization of how percentile values change over
windows. We show what the percentile 6.7 MAMJJ precipitation
amount for a reference window represents over time for England–
Wales (green solid lines), southern–central England (blue dashed
lines), and East Anglia (black dash-dotted lines) in (a) reconstruc-
tions, observations, and (b) simulations. The reference window is
centered on 1815 CE.

In general, there are not any clear common evolutions be-
tween the different data sets before the 20th century. Only the
dry percentiles in the simulation and the observations may
evolve similarly in the period of their overlap (Fig. 9). Inter-
estingly, there is an apparent contrast between the simulation
output and reconstructions with potentially opposite evolu-
tions in the period of their overlap prior to the 20th century
in all shown series. In the 20th century, on the other hand,
some commonalities may be inferred at least for the series
representing the reference percentile 93.3 (Fig. 7).

Most prominent in these analyses is that the distributions
for reconstructed precipitation show large shifts to larger pre-
cipitation amounts compared to the simulation and the ob-
servations. In contrast, the simulation and observations vary
only within a rather narrow range. This may relate to the
weaknesses of the reconstructions in representing not only
low frequencies but also extremes (compare Cooper et al.,
2013; Wilson et al., 2013). The regional simulation and the
reconstructions again show an apparent opposite evolution
for East Anglia and southern–central England. All sources of
information tend to show shifts in the probability of precipi-
tation amounts.

4.4 Relation between temperature and precipitation in
different data sources

We briefly explore the interrelation between the regional
temperature and precipitation variability focusing on the ex-
tended spring season from March to July. In particular, we
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show how interannual correlations between the precipitation
records and temperature series evolve over time for this sea-
son.

Figure 10 plots sliding interannual correlations for 51-year
windows between the observed and reconstructed precipita-
tion data and the Central England Temperature data as well
as the correlation between simulated England–Wales pre-
cipitation and simulated central England temperature. We
plot correlations for the untransformed precipitation records.
All records are for the MAMJJ season. Obviously, the large
amount of internal variability on local and regional scales
complicates the comparison among different data sources
when studying such small regions.

We expect variability in moving correlation coefficients
simply due to sampling variability (Gershunov et al., 2001).
For example, a bootstrap procedure following Gershunov
et al. (2001) suggests a 90 % credible interval for 51-year
moving window correlations of between approximately
−0.59 and approximately −0.21 for a correlation of approx-
imately −0.43 between simulated central England temper-
ature and England–Wales precipitation over the full period.
That is, variations in Fig. 10 are probably within the sam-
pling variability estimates for 51-year moving window cor-
relations. That further implies that for overall uncorrelated
data we can expect some windows to show statistically sig-
nificant correlations. We do not show significance levels in
Fig. 10 but we note that for 51-year windows and the time
series characteristics of the data (e.g., approximately uncor-
related noise for seasonal precipitation), one may regard ab-
solute values of correlation coefficients larger than 0.23 as
statistically significant at the 5 % level.

On interannual timescales and over 51-year moving win-
dows, all data sets evolve similarly in Fig. 10 for the ex-
tended spring season. However, observed and reconstructed
data show weaker correlations in the late 20th century, while
the correlation strength increases in the regional simulation.
Both reconstructions show no statistically significant relation
between temperature and precipitation over the full period.
The reconstruction for East Anglia is intermittently nega-
tively correlated with the temperature data. The observations
show a notable negative relationship from the second half
of the 19th to the mid-20th century. Only correlations be-
tween the regional simulation temperature and precipitation
are negative and relatively strong (r ≈ 0.5) throughout the
full period.

The observed negative relation is well known. For exam-
ple, Crhová and Holtanová (2018) show a slightly negative
correlation between temperature and precipitation in obser-
vations over the southern British Isles in spring and summer.
They also show that regional climate simulations usually cap-
ture this feature successfully.

Figure 10. Interannual correlations over 51-year windows between
extended spring (MAMJJ) Central England Temperature and vari-
ous precipitation records: extended spring (MAMJJ) precipitation
series for observational England–Wales precipitation (green), re-
constructed East Anglia precipitation (black), and reconstructed
southern–central England precipitation (blue). The grey line is for
the simulated representations of the England–Wales MAMJJ pre-
cipitation and the central England temperature in MAMJJ.

4.5 Considering further reconstructions and global
simulations

Here, we briefly describe additional results. If we perform
similar analyses as described above but on a selection of
the PMIP3 ensemble of global simulations (Schmidt et al.,
2011), we do not find commonalities between the simula-
tions or between the simulations and the other sources of in-
formation (not shown; see the Supplement). If we use differ-
ent reconstructions, agreement between simulated and recon-
structed precipitation does not necessarily increase, but dif-
ferences between reconstructions and observations may be
reduced (not shown; see the Supplement).

We use two different reconstructions based on δ18O. For
one, we obtain the precipitation reconstruction by Rinne et al.
(2013) for southern England for the May to August extended
summer season. Secondly, we use the isotope records for
England and Wales by Young et al. (2015) and scale the
composite against the observational England–Wales precip-
itation data. We follow the procedure described by Young
et al. (2015) but for two seasonal estimates, the extended
spring from March to July used in our main analyses and,
following Young et al. (2015), for the summer season from
June to August.

The Supplement provides some details for our summer
season scaling of the isotope data from Young et al. (2015).
The most striking feature is again a notable difference in
the percentiles prior to time windows approximately centered
on the year 1850 compared to the later period. This feature
resembles the behavior of the tree-ring-width-based recon-
structions. While this may be due to the chosen calibration
method and period, it appears more likely that there is a prob-
lem in the relationship between isotopes and precipitation for
this early period.
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Comparing our extended spring season scaling to the
equivalent observations, there is limited agreement for the
dry percentile after approximately the year 1850 (not shown)
but otherwise we cannot find any consistency in these data
compared to the observational counterparts. We also see no
agreement between the data by Young et al. (2015) and the
regional simulation output.

The period covered by the data from Rinne et al. (2013)
only shortly overlaps the period of the observational data.
For this overlap dry percentiles tend to agree with the obser-
vations but wet percentiles evolve oppositely (compare to the
Supplement). The change in average precipitation for a refer-
ence year also agrees between the two data sets for the time
of overlap (not shown). Compared to the regional simulation
output, evolutions tend to be opposite.

If we consider the relation between temperature and pre-
cipitation in the additional data sets and their respective sea-
sons, the disagreement between data sources changes com-
pared to our main analyses (not shown). The observations
show consistently negative correlations for the summer sea-
son, and the scaled isotope data by Young et al. (2015) agree
quite well with the summer observations except for a large
part of the 20th century when there is a markedly weaker
negative correlation (not shown). The simulation again shows
generally stronger correlations compared to the other data in
summer and shows some agreement with the observations in
the industrial period since approximately the year 1850 (not
shown). If we correlate the scaled isotope data to the temper-
ature for an extended spring season from March to July, the
correlations are quite similar to those for the larger-domain
simulation output but differ notably from the observations
(not shown). The extended summer (MJJA) reconstruction
by Rinne et al. (2013) agrees well with the respective obser-
vations by showing a consistently negative correlation (not
shown). The relationship is weaker for the reconstruction
prior to the period of the Oxford precipitation observations
(not shown).

5 Discussion

5.1 Validity of approach

Information from reconstructions and from simulation output
together increases our understanding of past climates. The
PAGES Hydro2k Consortium (2017) made recommenda-
tions for valid and appropriate comparisons of hydroclimate
data from both sources of information. Here, we consider ap-
proximately the last 350 years by comparing both estimates
to long instrumental data. We have to consider whether our
analyses are appropriate in the sense of the recommendations
concerning uncertainties, the properties compared, and the
expectations underlying the comparison (PAGES Hydro2k
Consortium, 2017).

The observational England–Wales precipitation data are
a weighted composite of regional series based on instru-

mental information. The information entering the compos-
ites and the regional index changed over time. Similarly, the
reconstructions combine spatially distributed proxies, e.g.,
tree-ring-width series into regional-scale composite series
(Cooper et al., 2013; Wilson et al., 2013), to maximize the
common signal between different locations. On the other
hand, the simulations are aggregations of various grid-point
time series from the simulation output. We assume that the
compositing and the aggregation have similar effects in re-
moving local variability. In this respect, records from differ-
ent sources are similar to each other and thus our comparison
appears valid.

Explicit uncertainty estimates are only available for the re-
construction for East Anglia and only for a low-pass-filtered
version of the data (Cooper et al., 2013). Our results as well
as the discussions of Cooper et al. (2013), Wilson et al.
(2013), Rinne et al. (2013), and Young et al. (2015) empha-
size that uncertainties for the reconstructions are potentially
large and that even the relationship to precipitation is not nec-
essarily valid for some periods. Similarly, uncertainties affect
the simulations not only with respect to our domain choice
but also with respect to the algorithms and parameterizations
implemented for simulating precipitation in the regional cli-
mate model.

Considering the limitations of any simulation and the
known shortcomings of the reconstructions, questions may
arise as to the validity and robustness of our analyses. Even if
one assumes that prior discussions on the reconstructions in-
validate their use, they would at least be a useful data source
for our first goal of highlighting the benefits of adding the SPI
to our set of tools for studying past precipitation variability.

However, we do not agree with such an assumption. The
reconstructions are still, at least “preliminary” (as stated by
Cooper et al., 2013), estimates of past precipitation for the
southern British Isles. As such, it is of value to include them
in a comparison of distributional precipitation characteristics
between different data sources for this domain. It is further of
interest to highlight for any available reconstruction on which
properties the reconstructed precipitation distributions agree
or disagree with the other sources of information. That is,
understanding our sources of information about past climates
requires the identification of their strengths as well as their
shortcomings.

More generally, we argue that the transformation to stan-
dardized indices provides a sound basis for equivalence be-
tween the different precipitation estimates for subsequent
comparisons of the distributional properties. Then, we as-
sume that the comparison becomes informative for changes
over time between these distributions. While we cannot ex-
pect accurate or even approximate temporal agreement be-
tween time series from simulation output and observation-
based data on either interannual or multi-decadal timescales
because of internal variability, the transformation makes our
comparison one of climatologies. Furthermore, one may as-
sume that the evolution of percentiles and variability may be
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more consistent between the different data sets than the aver-
age conditions.

5.2 Implications of the main results

Our analyses highlight the shortcomings of different recon-
structions relative to observations. We also see that differ-
ences compared to observations may be comparable for re-
constructions and simulations. Our approach further shows
that apparently the reconstructions and the simulations occa-
sionally evolve in opposite directions. This may signal that
we indeed do not perform a valid comparison, that simu-
lations may misrepresent forced responses, or, considering
the relationship between the reconstructions and tempera-
ture, that the reconstructions do not fully reflect precipitation.

We expect disagreement between simulations and obser-
vations because of differing influences of internal variabil-
ity (see discussion below). More critical is the lack of con-
sistency between reconstructions and observations. Most no-
tably, the reconstructions show unrealistically large changes
in the cumulative probabilities represented by certain pre-
cipitation amounts for the extended spring season MAMJJ
(compare Figs. 7 to 9). The reconstructions do not reliably
represent the extended spring precipitation distributions in
specific periods.

One result is the inconsistency of the relationships be-
tween temperature and precipitation in the data sets for the
considered domains for the extended spring season. Tout
(1987) and Crhová and Holtanová (2018) both note the neg-
ative relationship between temperature and precipitation ob-
servations for Britain. Tout (1987) does not find any changes
in the negative relationship between England–Wales precipi-
tation and Central England Temperature for the summer sea-
son from June to August between 1766 and 1980 CE. We
only find the negative relationship for the extended spring
consistently in the simulation and from approximately 1850
to 1950 CE in the observations. The tree-ring-width-based re-
constructions do not show any clear relationship for the ex-
tended spring season. The disagreement between data sets
changes for other seasons (not shown).

The differences between the simulation and observations
may imply either shortcomings of any of the observational
data sets in the early period or that the simulation presents
a too-stable relationship between temperature and precipita-
tion in southern Great Britain. Explanations might be phys-
ical inconsistencies within the simulations. More generally,
any of the data sources may lack the physical relationship
between the temperature and precipitation records in the cho-
sen season. Another possibility is that internal large-scale cli-
mate factors influencing the relationship between the two pa-
rameters evolve differently in the simulation and reality. As-
suming that the observations are the more reliable data set,
we tend to infer that the disagreement between observations
and reconstructions suggests major shortcomings in the re-
constructions.

5.3 Internal vs. forced variability

If we expect temporal consistency among the different
sources of information, then we are assuming that all the
sources of information are responding to the impact of ex-
ternal climate forcing and that the regional simulation skill-
fully represents the climate response to these conditions.
Nevertheless, internal climate variability may dominate even
for large-amplitude exogenous forcing (compare, e.g., Deser
et al., 2012a). We have to ask, what is our expectation of con-
sistency between simulated and observed responses to exoge-
nous influences?

The instrumental period overlaps the industrial period of
anthropogenic climate forcing. Earlier exogenous forcing is
potentially weak despite relatively large variations in solar
activity (Clette et al., 2014) and the occurrence of a num-
ber of strong tropical volcanic eruptions during the period of
interest (e.g., Schmidt et al., 2011).

Forced precipitation signals can agree in simulations, e.g.,
the CMIP5 21st century global projections (Fischer et al.,
2014). A lack of an identifiable relationship to the forcing
between different data sources in our study does not neces-
sarily imply that the underlying climate data are wrong but
may simply suggest that internal, e.g., oceanic, atmospheric,
or coupled climate, variability masks, modulates, or counter-
acts an external forcing influence. That is, the lack of consis-
tent evolutions points to shortcomings of the data sources or
an overwhelming influence of internal variability. We have to
emphasize that the regional simulation and its driving MPI-
ESM-COSMOS simulation both use variations of the total
solar irradiance forcing that could be unrealistically wide,
and neither simulation includes a resolved stratosphere to ac-
count for potential UV-related top-down mechanisms (Anet
et al., 2013, 2014).

In addition, our regional focus is close to the western
boundary of the domain of the regional simulation, and thus
we expect a rather strong influence of the dynamical evolu-
tion of the driving coarse-resolution simulation with MPI-
ESM-COSMOS. Indeed, Blenkinsop and Fowler (2007) re-
port a strong influence of the driving general circulation
model on the representation of drought in regional climate
simulations in southern Great Britain.

Relatedly, since the regional focus is a small domain, the
influence of natural internal variability is likely large: in the
case of the British Isles, variability in the North Atlantic Os-
cillation (Gómez-Navarro et al., 2012; Gómez-Navarro and
Zorita, 2013; Hall and Hanna, 2018; Matthews et al., 2016).
Thus, we should not expect simulations to agree with ob-
servations on the evolution of regional climate parameters
and even an ensemble may show diverse behavior. Differ-
ences in internal variability between models, observations,
and paleo-observations may include their representation of
past changes in the relationship between the regional cli-
mate and the large-scale circulation (Pinto and Raible, 2012;
Lehner et al., 2012; Raible et al., 2014).
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Thus, while the forcing history suggests notable variations
and the large-scale temperature records indicate an imprint
of the forcing history on hemispheric and global tempera-
tures, internal variability may dominate on smaller regional
scales (e.g., Deser et al., 2012b). This is despite the fact that,
e.g., the large-scale storm track is indeed sensitive to solar
(e.g., Ineson et al., 2015) and volcanic forcing (e.g., Fischer
et al., 2007; Trouet et al., 2018). Considering the possibly
large role of internal variability on regional scales and the
limitations of simulations in representing regional-scale pre-
cipitation, the occasionally consistent variations in precipita-
tion distribution properties increase our confidence in simu-
lated forced changes. However, while the regional simulation
appears to present similar variations compared to the obser-
vations during some periods, we cannot say whether it does
so for the right reasons.

6 Conclusions

This study pursued two goals. For one, we wanted to show
that the Standardized Precipitation Index (SPI) over mov-
ing windows helps in the rigorous comparison of differ-
ent sources of precipitation information over paleoclimatic
timescales. The information on precipitation distributions
obtained by the SPI approach eases a comparison of how
different sources of information represent climatologies of
precipitation. Second, by using this approach, we studied the
consistency of the various sources of information for precipi-
tation variations in a small regional domain in southern Great
Britain.

Regarding the results for our specific study domain, first,
we did not find any clear consistency for precipitation signals
among a regional climate model simulation, an observational
data set, and two local domain reconstructions. We conclude
that the considered reconstructions appear to be unreliable
representations of the observational series.

Second, the regional simulation shows occasional agree-
ment with its observational target, the observational
England–Wales precipitation data. In particular, the variabil-
ity in both data sources shows comparable changes for the
full period of the observations. This is possibly due to com-
parable changes in dryness, which also show some level of
agreement over the full period. This partial agreement in
terms of variability and dryness between the regional sim-
ulation and observations is encouraging. However, consider-
ing all associated uncertainties, we cannot conclude that the
agreement in properties reflects agreement in the underlying
processes in the respective data sources.

Third, the simulation data do not agree with the recon-
structions. Nevertheless, an interesting result is the at times
opposite evolution of the reconstructions and the regional
simulations considering regional dryness and wetness, e.g.,
between 1750 and 1850. Again, considering all sources of

uncertainty, we cannot attribute this to the external forcing or
to errors in either data source.

Fourth, our data sources do not agree on the strength
of the relationship between temperature and precipitation.
However, the relationships between the two parameters share
some common covariance on interannual timescales between
the sources of information for the season from March to July,
e.g., in the 19th century.

Generally, a dominant role of internal variability could ex-
plain the lack of consistency in standardized precipitation
measures in the different data sets on the temporal and spa-
tial scales we consider here; the relative role of the external
climate forcing generally becomes weaker at smaller spatial
and shorter temporal scales (Deser et al., 2012b). The lack
of general consistency and slightly differing interannual re-
lations between temperature and precipitation still require a
closer look at the uncertainties in observations, the methods
and input data for reconstructions, and dynamical and ther-
modynamical representations of regional climate in regional
simulations.

Data availability. The Central England Temperature data are
available from the Met Office at https://www.metoffice.gov.uk/
hadobs/hadcet/ (Parker et al., 1992).

The England–Wales precipitation data are available from the Met
Office at https://www.metoffice.gov.uk/hadobs/hadukp/ (Alexander
and Jones, 2000) as are the subdivisions for southeast, southwest,
and central England.

Station data for Oxford, Kew Gardens, and Pode Hole are avail-
able at, e.g., the Climate Explorer(http://climexp.knmi.nl/, Peterson
and Vose, 1997) of the Koninklijk Nederlands Meteorologisch In-
stituut (KNMI).

The reconstruction data for southern–central England and East
Anglia are available from the NOAA National Centers for Envi-
ronmental Information at, respectively, https://www.ncdc.noaa.gov/
paleo-search/study/12907 (Wilson et al., 2013) and https://www.
ncdc.noaa.gov/paleo-search/study/12896 (Cooper et al., 2013).

Temperature and precipitation fields from the regional simula-
tion with CCLM are available at http://doi.org/10.6084/m9.figshare.
5952025 (PRIME2, 2018).

If deemed relevant for future work, we are going to provide the
standardized data as well via a public repository.

Considering the data used in the Supplement, we are unable
to provide the data by Rinne et al. (2013) as we only obtained
them from the original author. The δ18O data from Young et al.
(2015) are available from https://link.springer.com/article/10.1007/
s00382-015-2559-4.
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Appendix A: Evaluation of the simulation setup
against the CRU data

We shortly describe the performance of the COSMOS-MPI-
ESM-CCLM setup compared to the observational CRU data
(Harris et al., 2014; University of East Anglia Climatic Re-
search Unit et al., 2017). We used version CRU TS 3.10,
which has subsequently been superseded. The current ver-
sion CRU TS 4.01 is available at http://doi.org/10/gcmcz3
(last access: 1 February 2019) with further information also
given at https://crudata.uea.ac.uk/cru/data/hrg/ (last access:
20 September 2018).

The mean climate of the driving COSMOS-MPI-ESM
simulation is too warm for much of the British Isles, the
Scandinavian Alps, northern North Africa, Iberia, the Alps,
southern France, Turkey, and Greece for all seasons over the
period 1951–2000 (Fig. A1, top). It is generally too cold
over the Baltic region, the eastern part of the model domain,
the southern border of the domain over Africa, and central
Europe. High-elevation and southern-area warm biases fre-
quently exceed 6 K. Cold biases exceed 2 to 4 K occasion-
ally over northeastern Europe and at the southern border of
the domain. We attribute these biases to some extent to the
cruder representation of the European orography and, possi-
bly related to that, to biases in the modeled atmospheric cir-
culation. However, the specific choice of forcings may also
influence the climatology.

In the regional CCLM simulation (Fig. A1, bottom), warm
biases for 1951–2000 are confined to the Atlas Mountains
in all seasons and to the south of the domain in spring and
summer. Cold biases are common otherwise and are largest
over the northeast, frequently exceeding 3–4 K.

For precipitation, summer is frequently too dry in central
Europe in COSMOS-MPI-ESM and especially at the west
coast of Scotland and in the Alps (Fig. A2, top row). The
southern domain is generally too dry in spring when Scandi-
navia is slightly too wet. Coastal and mountainous regions as
well as Iberia, Italy, and southern France are more likely to
be too dry in autumn and winter. Scandinavia is also too wet
in autumn. The COSMOS-MPI-ESM winter climatology is
too wet over much of central, eastern, and northern Europe.

In CCLM, too-dry conditions are generally confined to
southern Europe and North Africa and areas affected by the
storm track, i.e., the coasts of Scotland and Norway (Fig. A2,
bottom row). They extend to southern–central Europe only
in summer. The climate is too wet in Scandinavia and north-
eastern Europe in most seasons. Large parts of Europe are too
wet in all seasons except summer. Noteworthy is the excess
precipitation at the northern flank of the Alps from autumn
to spring. Part of these discrepancies is possibly attributable
to a too-zonal airflow outside the summer season.

In summarizing, the model presents a too-strong latitu-
dinal temperature gradient over the European domain. The
annual cycle of temperature is apparently too strong in the
south with warm biases in summer but cold biases in winter
and it is slightly too weak in the north with cold biases being
stronger in summer than in winter. Similarly to temperature,
the gradient in precipitation also appears to be too strong and
the annual cycle amplitude differs between simulation and
gridded observational estimates, especially for central Eu-
rope. Specifically, autumn and spring are wetter in the sim-
ulation, while summer conditions differ only slightly or are
too dry, which implies a weaker annual cycle compared to
observations.
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Figure A1. (a) Difference between the driving MPI-ESM simulation and the CRU data for seasonal near-surface air temperature. (b) Differ-
ence for CCLM.

Figure A2. As Fig. A1 but for precipitation.
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Appendix B: Uncertainty of running measures

Figure B1 shows bootstrap estimates over 1000 40-year sam-
ples for each 51-year window. The estimates are for the run-
ning measures for reconstructions and observations for the
three regions of interest (red) and the regional simulation
(blue). The top row shows Weibull standard deviations and
the bottom row is for the percentiles.

The figure highlights the fact that sampling variability is
generally larger for the simulated data. Indeed, sampling
variability may render differences between periods non-
significant. However, the bootstrap distributions also appear
strongly skewed.

Figure B1. Visualization of uncertainty in the distributional properties. We use a bootstrap procedure on running estimates. We resample 40-
year samples 1000 times from moving 51-year windows. Units are precipitation amounts. Shading represents 95 % intervals, lines are medi-
ans. (a, b, c) Weibull standard deviation. (d, e, f) Percentiles 93.3, 50, and 6.7. Red: reconstruction and observations. Blue: CCLM. (a, d) East
Anglia, (b, e) southern–central England, and (c, f) England–Wales precipitation.
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Appendix C: Distributional parameters

The Weibull distribution is a two-parameter distribution with
a scale and a shape parameter. See, e.g., Sienz et al. (2012)
for more details and how the distribution compares to other
distributions in computing the Standardized Precipitation In-
dex.

Figures C1 and C2 present the shape, k, and scale, λ, pa-
rameters of our Weibull distribution fits for the reconstruc-
tions for East Anglia and southern–central England, the ob-
servational England–Wales precipitation, and the respective
time series in the simulation.

Results for the simulation show very similar evolutions
among regions, highlighting the homogeneity of the simu-
lation data. There are also similarities between the two re-
constructions. One could argue the shape parameters evolve
similarly in the observation and simulation.

The shape parameter determines the “shape” of the dis-
tribution. In our cases, changes in this parameter are rather
small (compare Fig. C1). Nevertheless, they can result in no-
tably different widths of distributions for a specific data set
over time. It is interesting that there is only small overlap
between the range of shape parameters for the East Anglia
reconstruction and all other series.

Figure C1. Evolution of the shape parameter k for the Weibull distribution fits for the (a) East Anglia reconstruction, (b) southern–central
England reconstruction, (c) England–Wales precipitation observational data, (d) East Anglia regional simulation, (e) southern–central Eng-
land regional simulation, and (f) England–Wales precipitation regional simulation.

Larger-scale parameters for a constant shape parameter re-
sult in a flatter distribution that extends further to larger val-
ues. Smaller values result in a narrower distribution with a
larger probability density at its peak.

The evolution of the shape parameter reflects, in our
cases, the evolution of the skewness of the distributions (not
shown). All distributions show negative skewness, and the
amplitude increases with increases in the shape parameter.

Figure C3 shows the excess kurtosis over the period of in-
terest. The most common feature for the different records is
a negative excess kurtosis. Interestingly, the East Anglia re-
constructions show large positive values. The simulation data
have a period with positive, or for the simulated England–
Wales precipitation larger positive, values in the middle of
the 20th century, and the observed England–Wales precipita-
tion shows only negative excess kurtosis. The scaling of the
kurtosis axes for the reconstructions highlights the fact that
they show much larger values earlier in the last millennium
(not shown; compare to the Supplement).
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Figure C2. Evolution of the scale parameter λ for the Weibull distribution fits for the (a) East Anglia reconstruction, (b) southern–central
England reconstruction, (c) England–Wales precipitation observational data, (d) East Anglia regional simulation, (e) southern–central Eng-
land regional simulation, and (f) England–Wales precipitation regional simulation.

Figure C3. Evolution of the excess kurtosis of the fitted Weibull distributions for the (a) East Anglia reconstruction, (b) southern–central
England reconstruction, (c) England–Wales precipitation observational data, (d) East Anglia regional simulation, (e) southern–central Eng-
land regional simulation, and (f) England–Wales precipitation regional simulation.
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Appendix D: External code

This paper uses a number of external software packages. File
manipulations used Climate Data Operators (CDOs; https:
//code.mpimet.mpg.de/projects/cdo/, last access: 1 Febru-
ary 2019). Furthermore, the following R (R Core Team,
2018) packages helped in the work: gtools (Warnes et al.,
2018), corrplot (Wei and Simko, 2017), ncdf (Pierce, 2015),
VGAM (Yee, 2015), MASS (Venables and Ripley, 2002),
nortest (Gross and Ligges, 2015), dplR (Bunn et al., 2018),
zoo (Zeileis and Grothendieck, 2005), latex2exp (Meschiari,
2015), knitr (Xie, 2015), and rmarkdown (Allaire et al.,
2018). RStudio (RStudio Team, 2016) was also essential.
The paper was prepared using the rticles package (no ref-
erence available).

The SPI code is based on work by Frank Sienz (e.g., Sienz
et al., 2012). Christian Zang provided a Gershunov bootstrap
procedure (compare, e.g., Gershunov et al., 2001; Zang and
Biondi, 2015) that we modified.
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