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Many ocean-based geoengineering techniques have been suggested to improve the
efficiency of the “biological pump”. Alternatively, in this study we investigate how
enhancing diapycnal mixing at specific locations would affect all the forcings that in-
fluence the ocean carbon uptake, on decadal time scales. Firstly, we use the Oceanic
General Circulation Model (OGCM) of the CSIRO Mk3L Climate System Model, in
order to observe the response of the ocean to variations in the parameterization of
the vertical diffusivity Kv. This version of the CSIRO Mk3L model is combined with
the COAL (Carbon of the Ocean, Atmosphere and Land) component to represent
the carbon cycle, nutrient cycling and organic matter cycling in the ocean. In our
experiments, the model can also estimate the power added to the system in order to
obtain a highly mixed model column. Subsequently, we combine the OGCM with
the NOMAD (Nonlinear Optimization by Mesh Adaptive Direct Search) software,
with the aim of identifying the locations where a higher Kv would lead to a decline
in the partial pressure of CO2 at the ocean surface on short time scales. Lastly, we
test our hypothesis using a Community Earth System Model (CESM) that includes
the simulation of the global carbon cycle, in order to analyse the combined response
from the oceanic, atmospheric and terrestrial components.
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Chapter 1

Introduction

Variations in air-sea fluxes of heat, water, and carbon dioxide can affect the Earth
climate on seasonal to millennial time scales (Matear and Hirst, 1999; Riebesell,
Rtzinger and Oschlies, 2009). In particular, during the last decades, the ocean has
played a crucial role in regulating the concentration of CO2 in the atmosphere, as
stated in the Special Report on the Ocean and the Cryosphere in a Changing Climate
(SROCC, Pörtner et al., 2019). According to this Report, 20− 30 % of the anthro-
pogenic CO2 emitted in the last four decades has been absorbed by the ocean. As
a direct consequence, the oceanic carbon uptake has moderated the rate of global
warming. Moreover, ocean currents affect continental temperatures, being respons-
ible for the transport of heat from low to high latitude. Since the terrestrial carbon
pool is highly sensitive to temperature variations (Luo, 2007), the ocean also has an
impact on the amount of carbon stored by terrestrial vegetation and soil.

Considering the crucial role of the ocean in controlling the Earth climate, ocean-
based carbon dioxide removal techniques have been advanced to reduce the effects
of the anthropogenic CO2 emissions. Previous studies suggested that they would
have the potential to effectively mitigate Climate Change at a global scale (Zhang
et al., 2015). These techniques are a subset of a larger group of geoengineering meth-
ods, which have been proposed to counteract the causes or the effects of Climate
Change. Methods of geoengineering rely on the deliberate manipulation of the Earth
Climate, for example by varying the amount of solar radiation reaching the planet
surface. The implementation of some of these techniques might cause dangerous
side effects, which are difficult to evaluate due to the complexity of the climate sys-
tem (Zhang et al., 2015). On the other hand, the development and implementation
of geoengineering methods might be necessary to keep the global warming below
1.5◦C, since most mitigation pathways imply reliance on net negative CO2 emissions
(Rogelj et al., 2018). For this reason, the importance of investigating complementary
solutions for climate change mitigation, such as ocean-based geoengineering meth-
ods, should not be underestimated.

Ocean-based geoengineering techniques usually address the efficiency of the so
called biological pump. The biological pump is the main mechanism responsible for the
transport of carbon from the ocean surface to its interior, through sinking of organic
matter. This pump is affected by variations in the amount of nutrients and temper-
ature in the ocean surface. A more efficient biological pump leads to lower concen-
trations of dissolved inorganic carbon (DIC) in surface waters. As a consequence, at
the surface, the partial pressure of CO2 (pCOoce

2 ) is reduced, and the ocean carbon
uptake is enhanced. For example, the ocean iron fertilization is among the most dis-
cussed geoengineering proposals (Aumont and Bopp, 2006). This method involves
adding iron to surface waters to intensify the marine biological activity and, as a
consequence, the ocean carbon uptake.
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Alternative proposals to fertilize the ocean surface suggest to increment the up-
welling of nutrients from deep waters by mechanical means (Dutreuil, Bopp and
Tagliabue, 2009; Oschlies et al., 2010).

However, variations in ocean circulations and mixing would affect not only the
biological pump, but also a second mechanism, the solubility pump. At specific loc-
ations, this second mechanism can be the dominant process controlling the air-sea
CO2 flux, since it includes the effects on the oceanic carbon cycle due to variations
in the vertical profiles of temperature, DIC concentration and alkalinity. It is partic-
ularly easy to quantify the effect of a temperature variation on the solubility of CO2
in the ocean, since it is well known that a cooling of 1◦C causes a 4% decrease in
the pCOoce

2 (Takahashi et al., 1993). Hereinafter we will refer to these processes as
thermodynamic and hydrodynamic forcing on the air-sea CO2 flux. This terminology
is used to specify how a variation in ocean circulation and mixing affects the ocean
carbon uptake (Fasham, 2003).

Variations in ocean upwelling and diapycnal mixing are likely to have signific-
ant impacts on the Earth climate on short time scales (Oschlies et al., 2010; Dutreuil,
Bopp and Tagliabue, 2009). The response of the carbon cycle is due to local con-
sequence on the vertical profiles of temperature and DIC concentration, as well as
non-local effects, for example the advection of alkalinity anomalies (Dutreuil, Bopp
and Tagliabue, 2009).

In this project, we will test the hypothesis that the artificial enhancement of
diapycnal diffusivity Kv in specific regions of the ocean can lead to an increase in
the ocean uptake of anthropogenic CO2.

This hypothesis is supported by observations: for example, it was suggested that
periods of intense vertical mixing can lead to an increase in ocean carbon uptake in
the Mediterranean Sea, as it was observed in the winter of 1999 (Copin-Montégut
and Bégovic, 2002)

With this study, we conduct and analyse climate model simulations to evaluate
the effects of increasing Kv. Moreover, we quantify the power that would be required
to implement this geoengineering method. We use two climate models: the Com-
monwealth Scientific and Industrial Research Organisation Mark 3L (CSIRO Mk3L)
climate system model, and the Community Earth System Model (CESM) version
1.0.5, which are described in Chapter 2.

Moreover, we define and solve an optimization problem, with the aim of identi-
fying the locations where an increased Kv can lead to an increment in the oceanic
carbon uptake (Complex Systems Research Project, see Section 1.1).

1.1 Complex Systems Research Project

In this report, we combine the description of the Climate Physics master thesis and of
the Complex Systems research project. In particular, the Complex Systems research
part consists in the resolution of the optimization problem, which is illustrated in
Section 2.2, 3.4, 4.2 and in the Appendix A.
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Chapter 2

Methods

In this Chapter, we describe the methods used to test our hypotheses. Firstly, we il-
lustrate how we test the ocean response to a global variation in Kv (Section 2.1). Sub-
sequently, we present our approach to solve the optimal placement problem (Section
2.2). Lastly, we summarize the characteristics of the CESM version used to examine
specific configurations (Section 2.3).

2.1 Ocean response to a global variation in diapycnal mixing

We study the response of the ocean to global variations in diapycnal mixing using
the Ocean General Circulation Model (OGCM) of the CSIRO Mark3L climate system
model, which is a low-resolution version of the CSIRO Mk3 model.

In the following paragraphs, we summarize the main features of the OGCM,
which is described in detail in Phipps, 2010.

The ocean is represented by 21 vertical layers with nonuniform thickness, which
ranges from 25 m at the surface to 450 m at the bottom. The model horizontal res-
olution is 2.8125◦ EW × ∼ 1.59◦ NS. The resolution of the continental land mask
is lower, since it was generated to be compatible with both the OGCM and the At-
mospheric General Circulation Model (AGCM) included in the fully coupled CSIRO
Mk3 model. The resolution of the AGCM is 5.625◦ EW × ∼ 3.18◦ NS, so that 4
oceanic grid-boxes correspond to one atmospheric grid-box.

When the model is run in the stand-alone ocean mode, auxiliary files are required
to define the upper boundary conditions. Those files must contain the monthly val-
ues of salinity (SSS), temperature (SST) and wind stress at the sea surface. A times-
cale of 20 days is set for the relaxation of temperature and salinity in the model upper
layer towards the prescribed SST and SSS.

The model spin-up run is conducted under pre-industrial conditions: in partic-
ular, the atmospheric CO2 concentration is set to a constant value of 280 ppm. The
initial ocean state and boundary conditions are derived from the World Ocean Atlas
1998 (National Oceanographic Data Center, Ocean Climate Laboratory Products).

2.1.1 Representation of vertical diffusivity in the OGCM

In our experiments, we modify the parameterization of the vertical diffusivity Kv in
the OGCM. Therefore, it is important to examine how the background Kv is repres-
ented in the model.
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The vertical ocean mixing follows the scheme by Gargett A.E., 1984. According
to this study, Kv can be parameterized as a function of the Brunt-Väisälä frequency
N, following the profile:

Kv(i, j, k) =
ao

N(i, j, k)
(2.1)

where i, j, k identify the horizontal and vertical position of the model ocean box,
and ao is a parameter depending on the rate at which the energy is passed to small
scales by internal waves. In this model, ao = 10−3 cm2 s−2 for the oceanic internal
wave field.

Moreover, to mimic wind-forced mixing, a minimum value of Kv is imposed
between the upper two levels - where Kv,min(i, j, 2) = 2× 10−3 m2 s−1 - and between
the second and third levels - Kv,min(i, j, 3) = 1.5× 10−4 m2 s−1. At deeper levels,
the minimum value of Kv is set to a value that is an order of magnitude lower -
Kv,min(i, j, k) = 3× 10−5 m2 s−1.

In case of static instability, the value of Kv is raised to 100 m2 s−1, in order to
simulate convective mixing.

In our experiments, the value of Kv from Equation 2.1 will be incremented by
10−4 m2 s−1 in the ocean grid-boxes where we simulate the employment of mechan-
ical mixers, in order to achieve a highly mixed ocean column. This value has already
been used in other ocean models to represent natural hotspots of vertical mixing: for
example, a similar value of Kv was suggested for the representation of diapycnal dif-
fusivity in the Java, Flores, and Banda Seas by Jochum and Potemra, 2008. According
to this study, the Indonesian marginal seas are sites of elevated mixing, due to the
breaking of internal tides and strong ocean currents flowing over sills. Analogous
estimates of diapycnal mixing from these processes were obtained in the proximity
of the Mascarene Pateau (Lozovatsky, 2003), which is also characterized by intense
internal waves activity due to the local bathymetry. Moreover, the presence of nat-
ural sites with Kv in the order of 10−4 m2 s−1 was linked to increased biomass in the
Northern Bay of Biscay (Pingree and New, 1995).

Biogeochemical component

The CSIRO Mk3L model can be combined with the Carbon of the Ocean, Atmo-
sphere and Land (COAL) biogeochemical model, in order to represent the evolution
of carbon, nitrogen and phosphorus in the atmosphere and in the ocean. The ocean
biogeochemical component (OBGCM) also represents alkalinity, oxygen and iron
cycles.

The equation used to model the OBGCM tracers are described in Matear and
Lenton, 2014. Of particular interest for this project is the conservation equation for
dissolved inorganic carbon (DIC). Its evolution in time is described by:

∂DIC
∂t

= −∇3(uDIC) +∇I(KI∇I DIC) +
∂

∂z

(
Kv

∂DIC
∂z

)
+ QDIC

F −QDIC
O −QDIC

I

(2.2)
where the terms on the r.h.s. represent advection, diffusion along isopycnal

surfaces, diapycnal diffusivity, flux across the air-sea interface, particulate organic
carbon (POC) production and consumption, and particulate inorganic carbon (PIC)
production and dissolution.
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Therefore, a variation in Kv affects the evolution of DIC directly, through the
vertical mixing term in Equation 2.2, and indirectly, via variations in the fluxes QDIC

F ,
QDIC

O and QDIC
I .

In the Results section (Chapter 3), we will look in particular at the changes in the
carbon surface flux QDIC

F , which is parameterized as:

QDIC
F = Kg(pCOatm

2 − pCOoce
2 ) (2.3)

where Kg is the gas exchange coefficient, while pCOatm
2 and pCOoce

2 represent the
partial pressure of CO2 in the atmosphere and at the ocean surface, respectively. In
our experiments with the CSIRO model, pCOatm

2 = const. = 280 ppm. Therefore, a
necessary condition for increasing in the ocean carbon uptake is to reduce the value
of pCOoce

2 .

Estimate of the energy required for artificial mixing

We want to understand what is the order of magnitude of the power required to
increment Kv by 10−4 m2 s−1. To have a reference value to which compare our
estimates, we will consider the amount of power that could be collected by installing
ocean turbines. This would be a clean energy source, and it could be generated close
to the site where the artificial mixers are installed.

We assume that the length scale L at which the artificial mixers transmit turbulent
kinetic energy to the ocean water is larger than the Ozmidov length scale:

LO =
√

ε/N3

where ε is the rate of turbulent energy dissipation, while N is the Brunt-Väisälä
frequency. This assumption allows us to assume that the mixing efficiency Γ ap-
proaches its maximum value: Γmax = 0.2 (Bluteau, Jones and Ivey, 2013).

In this case, it is possible to estimate the energy required for artificial mixing
using the following equation (Osborn, 1980):

ε(z) =
Kv

Γ
N2(z) ∼ Kv

0.2
N2(z) (2.4)

where N(z) is the Brunt-Väisälä frequency, and where we assume an optimal
mixing efficiency Γ ∼ 0.2.

Lastly, the power required to increase Kv in the ocean grid-box i, j, k is obtained
including in the OGCM the following calculation:

P(i, j, k) = ε(i, j, k)M(i, j, k) =
10−4 m2 s−1

0.2
N2(i, j, k)M(i, j, k)

where M(i, j, k) is the mass of the ocean grid-box, and ε(i, j, k) is the rate of tur-
bulent energy dissipation, which is calculated using Equation 2.4.

Experimental design

The OGCM will be used to study the response of the ocean to variations in diapycnal
mixing, and to find the optimal configuration of a potential implementation of arti-
ficial enhancement of vertical diffusivity.
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First of all, we need to test the sensitivity of the model to changes in diapycnal
mixing. Therefore, we run experiments starting from a condition of equilibrium,
and we look at the time scale of the response of the system. The model was spun
up under preindustrial atmospheric CO2 concentration, which is defined to be con-
stant and set at 280 ppm, until the simulated climate became stable. We start our
experiments from this condition of equilibrium, and we perturb the system increas-
ing the vertical diffusivity at every ocean column (Section 3.2) or at specific locations
(Section 3.3).

We will run 50 year simulations, in which artificial mixing starts after 5 years,
and it continues constantly for the following 45 years.

In the following paragraph (Section 2.2), we explain how the OGCM is coupled to
the NOMAD optimization software, in order to identify the most suitable locations
for the implementation of this geoengineering technique.

2.2 Artificial mixing hotspots: optimization problem

Since geoengineering methods are more likely to be implemented over a restricted
area of the ocean, it is interesting to investigate which is the optimal choice for the
artificial mixer placement, i.e. the solution leading to the minimum value of global
mean pCOoce

2 . Moreover, this analysis can lead to a better understanding of the
non-local effects that hotspots of diapycnal mixing have on the ocean carbon cycle.

For this analysis, we couple the ocean component of the CSIRO Mk3L climate
model to the Nonlinear Optimization by Mesh Adaptive Direct Search (NOMAD)
software. This model implements the Mesh Adaptive Direct Search (MADS) al-
gorithm to solve computationally expensive optimization problems (Le Digabel et
al., 2009).

The aim of the algorithm is to improve the current best feasible solution, using
the information collected in the previous model evaluations. At each iteration, a 5-
year simulation of the OGCM is completed. All the scripts needed to generate the
model input, run the simulation, and process the model output, are included in a
so-called blackbox: this program is able to read as input the new potential solution x
suggested by the NOMAD software, and it gives as output the value of the objective
function f (x) at that point. Since the computational cost of one blackbox evaluation
is very high, we also use dynamical surrogate functions: this method involves the
use the information collected in the previous model runs, to approximate the real
objective function f (x) with a surrogate s(x). This allows us to apply a preliminary
test on the potential trial points.

Appendix A contains a more detailed description of the methods that were used
in this section of the project.

2.2.1 Experimental design

The MADS algorithm and the blackbox (or surrogate function) are evaluated in a
loop until either the maximum number of blackbox evaluations, or the maximum
running time, is reached. The input file to the NOMAD algorithm is used to indicate
the specific properties of each experiment. We set the maximum time for the model
evaluation at 4 days, and no more than 300 evaluations can be performed. Moreover,
we can specify that each pair of variable represents the coordinates of one location,
so that the algorithm generates the new trial points by moving one location at a
time. This technique is typically used in optimal placement problems (Alarie et al.,
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2013). We test our method under different initial solutions, problem dimensions,
and search regions, as it is described in Sections 3.4, and in the Appendix A.

2.3 CESM experiments

The CESM 1.0.5 will be used to test some potential configurations of mixing hot-
spots.

We use a version of the model that includes a biogeochemical component, so that
the carbon cycle in the Earth System is simulated.

We run 140 years simulations, starting from an initial condition similar to the one
described in Section 2.1, meaning that the model spin-up run is performed under
preindustrial condition. At year 40 of our model run, two branches are simulated: a
control run (CTRL) and a simulation in which Kv is incremented in specific regions
of the ocean for the following 100 years. We test 5 configurations: 3 hotspots experi-
ments (Ind, Alt3, and Atl6) and 2 regional experiments (EQATL_MED and NWATL).

The sites of enhanced mixing in each experiment are indicated in Figures 3.5 and
3.8.

2.3.1 Representation of vertical mixing in the CESM

In the CESM model, the background vertical diffusivity follows the vertical profile
in Bryan and Lewis, 1979, which is given by the following expression:

Kv(z) = Kv,1 + Kv,2 × arctan[ (|z| − d)× linv] (2.5)

where Kv,1 is the value of Kv at |z| = d, while Kv,2 determines the amplitude of
the variation of Kv in the water column, and linv is the inverse length-scale of the
transition region (Smith et al., 2010).

The values assigned to the parameters included in Equation 2.5 lead almost
everywhere to a typical value of vertical diffusivity: Kv ∼ 0.17× 10−4 m2 s−1. How-
ever, a latitudinal structure is also included, by increasing Kv in the latitude bands
around 30◦ N/S to Kv = 0.3 × 10−4 m2 s−1, while at the equator it is reduced to
Kv = 0.1× 10−4 m2 s−1. Moreover, a natural site of intense vertical mixing is simu-
lated in the Banda Sea, where Kv = 1.0× 10−4 m2 s−1.

In our experiments, we set the same value Kv = 1.0 × 10−4 m2 s−1, from the
surface of the ocean until a depth z = 1000 m, at all the locations where we simulate
the employment of artificial mixers as a geoengineering technique.
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Chapter 3

Results

In this Chapter, we present the main results of our project. The effect of increasing Kv
on the carbon cycle will be measured through the observed variation in the partial
pressure of CO2 at the ocean surface ( pCOoce

2 ): in fact, a necessary condition to obtain
an increase in the uptake of CO2 is to reduce the global mean pCOoce

2 .
Firstly, we briefly describe the spatial distribution of pCOoce

2 in the model mean
state, in order to highlight which are the main natural oceanic sources and sinks of
CO2 to the atmosphere (Section 3.1). Then, we look at the experiments conducted
with the OGCM of the CSIRO Mk3L-COAL model (Section 3.2 and 3.3). Lastly, we
describe the outcome of the optimization problem (Section 3.4), and we analyse the
output of the CESM simulations (Section 3.5 and 3.6).

3.1 Air-sea CO2 flux map in the model mean state

As we described in Section 2.1 (see Equation 2.3), the carbon surface flux QDIC
F is

proportional to the difference ∆pCO2 between the partial pressure of CO2 in the
ocean surface and in the atmosphere: ∆pCO2 = pCOoce

2 − pCOatm
2 .

Figure 3.1 shows the spatial distribution of ∆pCO2 in the CSIRO Mk3L-COAL
model mean state. This plot is obtained from a 5 year average of the model condi-
tions at the end of the spin-up run.

FIGURE 3.1: Distribution of ∆pCO2 under pre-industrial (PI) condi-
tions - averaged over 5 years of the OGCM control simulation.
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Looking at Figure 3.1, we can see the main features characterizing the global
pattern of the air-sea CO2 flux. One can observe that the main sources of CO2 to
the atmosphere are regions where the hydrodynamic forcing is dominant, i.e. regions
where the upwelling of deep water leads to higher concentrations of DIC in the
ocean surface. In particular, we can see that the upwelling regions at the equatorial
divergence and in the Southern Ocean are characterized by pCOoce

2 > pCOatm
2 .

Moreover, in the Eastern Equatorial Pacific, other two factors contribute to the
CO2 outgassing: the deep water is highly heated when it reaches the surface, and
the biological activity is limited by the availability of nutrients in the area. As a res-
ult, the thermodynamic and biological forcings are also responsible for the high values
of pCOoce

2 registered there. The net effect of increasing Kv in this region is difficult
to predict: on one hand, more carbon would reach the ocean surface; on the other
hand, it might reduce the surface temperature and increment the amount of nu-
trients, leading to a beneficial effect through both the solubility and the biological
pumps. The complex interaction between these opposite responses will determine
the final outcome.

Other sensitive regions are the western boundary currents, which represent the
major sinks of atmospheric carbon in the ocean. In particular, along the Kuroshio
current and the Gulf Stream, the warm waters lose heat while they are transported
northward. As a result, these regions are characterized by a net under saturation
of CO2 (Fasham, 2003). Increasing Kv at - or close to - these regions, we can expect
consequences both on local scales and in the whole basin, trough potential changes
in the Meridional Overturning Circulation (MOC).

3.2 Global mixing experiments

In this Section, we present the results form the first experiments with the OGCM
running in stand-alone mode: therefore, the boundary conditions at the air-sea inter-
face do not vary in time. In these experiments, we enhance vertical mixing globally:
Kv is higher by 1× 104 m2s−1 at every ocean model column. Two possibilities are
considered, in which artificial mixers are employed (1) from the ocean surface or (2)
from a depth of about 200 m (the 7th model layer). In both cases, Kv is increased until
z = 1000 m (the 12th model layer). Note that artificial mixing starts from year 5 of
the simulation, and then it continues constantly for the following 45 years.

With these experiments, we want to test the sensitivity of the system to a global
variation of Kv: therefore, we are interested in the magnitude of the variation in
pCOoce

2 , the timescales involved in its evolution, and the power added to the system
to increase Kv by 1 × 104 m2s−1. These data can be obtained looking at the two
plots in Figure B.1 and B.2, which show the first 20 years of employment of artificial
mixers.

The most important conclusion that we can deduce from Figure B.1 is that, in
both experiments, a global increment of Kv leads to an increase in the global mean
value of pCOoce

2 . When the geoengineering method is implemented from the ocean
surface, the magnitude of the increase in pCOoce

2 is ∼ 14 ppm, while in the second
scenario it is about 4 ppm. Both curves reach a plateau before the end of the simu-
lation, showing that the mechanisms involved can lead to a new stability between
the atmosphere and the ocean surface in the time scales of our experiment, when the
atmospheric conditions are kept constant.
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Figure B.2 shows the global mean vertical profile of the power added to the sys-
tem, to obtain a 1× 104 m2 s−1 increase in the diapycnal mixing. The values shown
are relative to the average power needed for one model column. Integrating over
the whole column, we find that the the total power needed for one model column
ranges from Ptot = 425 MW (starting from the surface) to Ptot = 179 MW (starting
from z = 200 m). Dividing by the mean area covered by one model column, we find
that the average power added to the system is 7.7 kW km−2 and 3.2 kW km−2 in the
two scenarios, respectively.

However, further studies are needed to verify the assumptions that we made
in our calculations, most importantly the assumption of approaching the optimal
mixing efficiency Γmax: the value of Γ depends on the length scales at which the
energy is passed to the system (see Section 2.1) and, therefore, on the technology
employed to obtain the increase in Kv.

Unless differently specified, hereafter we will always consider experiments in
which the artificial mixers operate from the surface of the ocean, in order to obtain a
larger response from the ocean.

Figure B.3 shows the spatial pattern of the ∆pCO2 variation, and its evolution in
time. Regions where ∆pCO2 increases indicate a harmful effect on the oceanic carbon
uptake, while a decrease of ∆pCO2 is linked to a beneficial effect on the efficiency of
the carbon pumps.

Firstly, one can observe that the maximum amplitude of the increase in ∆pCO2
is larger than the maximum reduction, and that harmful effects occur over large
regions of the ocean. These two first considerations are in agreement with what ob-
served in Figure B.1, i.e. that the global mean variation in pCO2 is positive. Moreover,
the spatial pattern is approximately constant after the first few years, and in the fol-
lowing part of the simulation both positive and negative effects amplify their mag-
nitude over time: we can interpret this observation with the fact that, in general, the
relative impact of the three forcings at a specific location do not vary in time. This
explains why the global mean value reaches a plateau in Figure B.1.

Only specific areas show a large reduction in ∆pCO2: for example, the region
along the western coastline of North America is characterized by a lower ∆pCO2
in the experiment compared to the mean state of the model, with a variation in the
order of −40 ppm.

To better understand the mechanisms leading to these results, one can look at
the maps in Figure B.4. This Figure highlights only the areas where beneficial ef-
fects were observed, i.e. where we obtained a decrease in ∆pCO2 (Figure B.4a and
B.4b), SST (Figure B.4c and B.4d), or Sea Surface DIC concentration (Figure B.4e and
B.4f). We can observe that, after one year of artificial mixing, the dominant forcing
over large regions of the Global Ocean seems to be the thermodynamic forcing: a
reduced SST is registered almost everywhere, due to the upwelling of deep colder
water. However, by the end of the simulation, the regions characterized by a lower
SST do not correspond to the areas with lower values of pCOoce

2 . Therefore, we can
conclude that the interplay between the hydrodynamic and the biological forcings
appears to be responsible for a potential increase in the ocean carbon uptake on
longer timescales.

The biological pump is responsible for the sinking of carbon to deeper waters,
via the production of Particulate Organic Carbon (POC). To verify if this process
was amplified by the artificial increase of Kv, we look at the variation of the POC
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production in Figure B.5 (note that these three maps are relative to year 20 in the
simulation where mixing is increased from a depth of z = 200 m). In Figure B.5a,
we can detect two large areas where the ∆pCO2 reduction is in the order of mag-
nitude of 10 ppm, one located at the center of the Pacific Ocean, in the Southern
Hemisphere, and one in the Atlantic Ocean, covering the Equatorial Atlantic and ex-
tending southward along the east coast of South America: looking at Figure B.5b, we
can attribute the largest pCOoce

2 reduction in the Pacific Ocean to an increment in the
POC production, caused by an intensified biological activity; it is more difficult to
understand the drivers of the pCOoce

2 reduction in the Atlantic Ocean, which could
be linked to a lower SST in the basin (Figure B.5c) and effects on the meridional
overturning circulation.

3.3 Global hotspots experiments

In this Section, we increase Kv by 1× 104 m2s−1 in the upper 12 levels of the CSIRO
Mk3L-COAL ocean model, at 1 ocean column every Ncol model grid cells in the
latitudinal and longitudinal direction: therefore, we tested here the effects of having
specific sites of intense vertical mixing (hotspots), that are evenly distributed within
the Global Ocean.

With these experiments, we want to test which are the main non local effects
caused by an artificial enhancement of diapycnal mixing, similarly to what was done
in Dutreuil, Bopp and Tagliabue, 2009.

In the case Ncol = 4, the locations where Kv was incremented are indicated in
Figure 3.2.

FIGURE 3.2: Locations of the sites where Kv is incremented (yellow
dots) from the ocean surface to z = 1000 m.

The experiment results can be found in Figures B.6 and B.7.
The intensity of the variation in ∆pCO2 (Figure B.6) is an order of magnitude

lower than the one obtained in the global mixing experiment (Figure B.3). We can
also observe that the variation is generally more intense at the artificial mixing site,
with some exceptions, the most evident being in the Eastern Equatorial Pacific: here,
relatively large effects are also detectable at locations where Kv had the same value
as in the control run.
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Similarly, in Figure B.7 we can see that the potential reductions in SST and DIC
concentration can be registered also because of the advection of anomalies generated
at the mixing hotspots to areas where Kv remained unchanged. Especially after the
first simulation years, when the results start to stabilize, the extension and location of
the areas that benefit from the geoengineering technique is similar to the one found
in the Global Mixing Experiment (Section 3.2), as we can deduce comparing Figure
B.4b and Figure B.7b.

3.4 Optimization problem results

In this section, we present the results obtained from the resolution of the optimiza-
tion problem, in which we aim to find the best locations where to increase vertical
mixing.

The efficiency of the MADS algorithm depends on two main factors: the search
region and the dimension of the problem.

First of all, we fix the number or mixing location to n = 3, and we compare the
results obtained using different domains. In particular, we considered four potential
search regions: the Atlantic, Pacific, Indian and Global Ocean. The resolution of
the grid is such that 4 × 4 ocean grid boxes correspond to 1 potential location of
intense mixing. The resulting shapes of the four domains are shown in Figure A.3
of Appendix A. We apply our method to each domain, for a period of time of 19
hours: this allows us to obtain ∼ 50 evaluations of the model for each experiment.
The results of these experiments are summarized in Table 3.1.

TABLE 3.1: Comparison between different search regions:
the columns indicate, from left to right: the search region, the num-
ber of model evaluations completed, the maximum (or initial) value
assumed by f (x), the value of f (x) relative to the optimal solution,
and the ∆pCO2 obtained at the end of a 50 year simulation under the

conditions defined by xopt
- *values relative to f (xin).

Experiment # evaluations f (xmax) [ppm] f (xopt) [ppm] ∆pCOoce
2 [ppm]

Indian 56 249.2816* 249.1762 + 0.05
Pacific 51 249.3806 249.1707 + 0.08
Atlantic 48 249.2176 249.1593 - 0.12
Global 46 249.2080* 249.1742 //

It is important to notice that the improvement in the value of the objective func-
tion f (x) is relatively small. This is due to the fact that we are increasing the value of
Kv over a restricted area of the ocean: with n = 3 mixing hotspots, the area involved
in the geoengineering technique would be ∼ 3× 106 km2. Moreover, we look at the
global impact of the local increment in Kv, having defined the objective function f (x)
as the global mean value of pCOoce

2 : this is necessary, in order to take into considera-
tion both local and non-local effects, which might counter-act each other. Lastly, the
value of f (x) is calculated after only 5 years of artificially enhanced mixing.

To check if the effects are amplified after a longer period of time, we consider the
configurations indicated by the optimal solutions xopt, and we run 50 years simula-
tions with the OGCM in which artificial mixing is implemented from year 0 to the
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end of the run. We compare the variation in the value of the partial pressure of CO2
at the ocean surface, ∆pCOoce

2 , in the different experiments.
From this analysis, we can see that the optimization procedure leads to the iden-

tification of a configuration that causes a reduction in the value of pCOoce
2 , lying in

the Atlantic Ocean domain. The results obtained with the other three domains (In-
dian, Pacific, and Global Ocean) are similar and less promising than those obtained
in the Atlantic Ocean. This can be due to the size of the latter domain (which is smal-
ler than the Pacific and Global Ocean) and on its shape (being narrow in the zonal
direction, and reaching high latitudes in both hemispheres).

Therefore, from now on, we will focus on maximizing the efficiency of our method,
applying it to the Atlantic Ocean.

We now address the effects linked to the choice of the number of intense mixing
sites n: we vary its value, ranging from n = 2 to n = 6 , and compare the evolution
of f (xopt) in the different cases. Note that each location is represented by two vari-
ables (its model coordinates), therefore the dimension of the problem dim is twice
the number of high mixing sites n. Figure 3.3 shows the results of this analysis.

FIGURE 3.3: Comparison of the convergence curves, varying the
problem dimension from 4 (n = 2 sites of enhanced Kv) to 12 (n = 6
sites of enhanced Kv), with the search region illustrated in Figure A.3a

(Atlantic Ocean).

As expected, when dim increases, a higher number of evaluations is needed to
find a solution close to the optimal. Looking at Figure 3.3, one can observe that the
algorithm is not efficient when a too high dimension is set: in the case of dim = 2n =
12, the value of f (xopt) does not improve for more than 150 model evaluations.

One can also note that setting n = 3 or 4 leads to a better solution than using
n = 2: this can be explained by the fact that, with a larger area of the ocean involved
in the experiments, the signal is larger and clearer, improving the efficiency of the
method.

The objective of this part of the project is to identify the most promising locations
where to increase mixing. Therefore, we look at the locations in the Atlantic Ocean
domain that most frequently appear in the 20 best feasible solutions, which were
found at the end of the optimization procedure with dim = 6 (found in the last ∼ 50
model evaluations).

Figure 3.4 shows the number of times that each site is present in those solutions.



3.5. CESM hotspots experiments 15

Looking at Figure 3.4, the most evident feature is that two cells are almost al-
ways found in the best solutions: these cells are located in the Western Equatorial
Atlantic, along the coast of South America. The favorable area seems to extend in
the northeastern direction, towards the Strait of Gibraltar, and some solutions also
contain sites within the Mediterranean Sea. We can conclude that these might be
regions where the dominant effects of increasing Kv, at short time-scales of a few
years, are changes in the thermodynamic forcing (due to the upwelling of colder wa-
ter to the warm surface layer) or/and in the biological forcing (due to the upwelling
on nutrients). This conclusion will be verified looking at the results from the CESM
simulations, which are presented in the following section.

FIGURE 3.4: Frequency of the presence of each location in the 20 best
feasible solutions, which were found applying the optimization pro-

cedure to the Atlantic Ocean domain, with dim = 6.

3.5 CESM hotspots experiments

Firstly, we use the CESM model to test the effects generated by some of the config-
urations found while running the optimization model. Note that these were the best
solutions found after∼ 50 model evaluations, and better solutions were found when
we let the model run for a longer period of time.

The three configurations that we selected can be visualized in Figure 3.5.

(A) Ind experiment. (B) Atl3 experiment. (C) Atl6 experiment.

FIGURE 3.5: Maps indicating the locations where Kv is incremented
(yellow squares) in the 3 hotspots experiments.
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Two configurations (Ind and Atl3 experiments) involve the implementation of 3
hotspots of vertical mixing in the Indian or Atlantic Ocean, while one experiment is
conducted with 6 artificial sites (Atl6 experiment).

The main experiments results are summarized in Figure 3.6. The carbon fluxes
to the atmosphere (Jtot) are separated into the fluxes from the ocean (Joce) and from
land (Jland). The surface fluxes are characterized by a strong natural variability on
seasonal to interannual time scales: for this reason, Figure 3.6a shows the 5 year
running average of the cumulative anomaly between the carbon surface fluxes in the
experiment and in the control run. This plot displays 140 years of simulation: at year
40, the simulation branches in four, one control simulation without the employment
of artificial mixers, and three simulations where Kv is incremented in the regions
defined in Figure 3.5. Looking at the evolution in time of the cumulative anomaly
in the CO2 surface fluxes (Figure 3.6a), we can conclude that, in all the experiments,
there is an increase in the amount of carbon released by the ocean to the atmosphere.
The land component partially counteracts this effect, since more carbon is stored in
the soil and vegetation pools. As a result, the difference between the atmospheric
concentration of CO2 in the CTRL run and the experiment is positive, in general, but
the values fluctuate within the variability range registered in the CTRL simulation.

(A)
(B)

FIGURE 3.6: Evolution in time of the CO2 surface fluxes cumu-
lative anomaly [g C m2](3.6a) and atmospheric CO2 concentration

[ppm](3.6b) in the 3 hotspots experiments.

The only experiment where a decreasing trend can be detected is Atl6: however,
simulations over a longer period of time are needed to verify if the trend would con-
tinue after 100 years of artificial mixing, and lead to significantly lower atmospheric
CO2 concentrations.

In Figure 3.7 we focus on the Atl6 experiment, as we want to understand which
regions are affected by the largest cumulative anomalies at the end of the simulation.
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FIGURE 3.7: Distribution of the CO2 surface fluxes cumulative anom-
aly [g C m2] at the end of the 100 year simulation.

Firstly, comparing Figure 3.7 and 3.5c, we can verify that the largest effects are
found at some of the sites where Kv is incremented, but not all the hotspots are de-
tectable in the map. The largest growths in the oceanic outgassing of CO2 are found
at the sites of artificial mixing in the Equatorial Atlantic and in the Southern Ocean,
while the largest responses by the land component occur in the South American
continent.

The drivers of the oceanic and land responses will be analyzed in more detail
conducting regional experiments, which are described in the next Section.

3.6 CESM regional experiments

In this Section, we present the results of the two regional experiments conducted
with the CESM.

The areas where Kv is incremented in each experiment are indicated by Figure
3.8. Note that the EQATL_MED experiment (Figure 3.8a) was designed using the in-
formation obtained from the resolution of the optimal displacement problem: there-
fore, we expect from this scenario an increase of the oceanic carbon uptake, as pro-
jected by the Mk3L-COAL model within the optimization procedure.

We compare this scenario with the NWATL experiment (Figure 3.8b), in which
we test the sensitivity of the Atlantic Meridional Overturning Circulation (AMOC)
to variations in Kv in the Northwestern Atlantic Ocean, and the potential effects on
the carbon cycle.

(A) EQATL_MED (B) NWATL

FIGURE 3.8: Maps indicating the locations where Kv is incremented
(yellow squares) in the 2 regional experiments.
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Table 3.2 contains the cumulative anomalies in the surface carbon fluxes, separ-
ating the total flux to the atmosphere (Jtot) into the surface flux from the ocean (Joce)
and from the land component (Jland). Moreover, we consider how the variations
evolve from the beginning of the experiment, evaluating the cumulative anomaly
over the first 5 years of artificial mixing, to the end of the simulation (after 100 years
of enhanced mixing).

TABLE 3.2: Changes in the surface carbon fluxes,
expressed as the cumulative anomaly [gC/m2] between the control
run CTRL and each experment (EQATL_MED and NWATL) over the
first 5 and 100 years of the implementation of artificial mixing in the

two regional experiment.

Cum. An. (gC/m2)

Experiment Surface Fluxes Year 5 Year 100

EQATL_MED
∆ Jland 5.30 0.15
∆ Joce −0.52 4.79
∆ Jtot 4.78 4.94

NWATL
∆ Jland 1.29 −2.05
∆ Joce 1.41 12.29
∆ Jtot 2.69 10.24

Note that, over the first five years of the EQATL_MED experiment, we obtain
∆Joce = −0.52 < 0, meaning that the surface flux from the atmosphere to the ocean
increases on these time scales: this confirms the results of the optimization problem,
which aimed at increasing the oceanic carbon uptake on these timescales. However,
the total flux to the atmosphere is always higher in the experiment than it is in the
CTRL run: initially, this is due to an increased flux of CO2 from land, while later in
time the outgassing from the ocean is dominant.

In the NWATL, the variation in ∆Joce is responsible for the increase of ∆Jtot by the
end of the simulation, while the response of the land component has a dampening
effect.

The variations in global mean pCOoce
2 , global mean atmospheric CO2 concentra-

tions and AMOC index are listed in Table 3.3. The AMOC index is defined as the
maximum overturning streamfunction, between z = 500 m and z = 3000 m, at a
latitude of 30◦ N.

TABLE 3.3: Mean values and standard deviations of: the reference
values in the CTRL run; the differences between each regional exper-
iment and the CTRL run in global mean pCOoce

2 , global mean atmo-
spheric CO2 concentration and AMOC index, averaged over the last

50 years of simulation.

Mean Difference

Variable Unit CTRL mean value EQATL_MED NWATL

pCOoce
2 ppm 266.03± 0.63 +5.03± 1.06 +1.20± 0.73

COatm
2 ppm 269.49± 0.37 +3.39± 0.70 +0.32± 0.50

AMOC index Sv 10.88± 0.84 +1.38± 1.09 −4.42± 1.51
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The mean global pCOoce
2 increases in both regional experiments by the end of the

simulations. However, note that at the beginning of the EQATL_MED experiment
its value decreases, with a variation of −0.94 ppm after the first 2 years of increased
Kv.

We also look at the effect on the MOC strength, analysing the changes in the
AMOC index. As we anticipated, increasing Kv in the Northwestern Atlantic causes
a large response from the meridional circulation: however, in contrast to what ex-
pected, the sign of the AMOC index variation is negative, indicating a significant
reduction in the strength of the circulation.

In the following paragraphs, we will analyse in more detail the mechanisms lead-
ing to these results, looking first at the EQATL_MED experiment (Section 3.6.1), and
then at the NWATL experiment (Section 3.6.2).

3.6.1 Increased Kv in the Equatorial Atlantic and Mediterranean Sea

In this paragraph, we focus on the effects of increasing Kv in the Equatorial Atlantic
and Mediterranean Sea (EQATL_MED experiment).

Figure B.8a shows how the land and oceanic carbon fluxes varied as a response
to the enhancement of vertical mixing.

Two phases can be clearly identified looking at Figure B.8a.
In the first phase, the oceanic uptake increases: the reasons for this achievement

can be understood looking at Figure 3.10, which shows the evolution in time of the
mean profiles of temperature and POC production in the Atlantic Ocean. One can
see that both the thermodynamic and biological forcings appear to be responsible for
a higher oceanic carbon uptake: at the ocean surface, we can detect lower SST and
higher POC production already after 1 year of mixing enhancement.

However, in the first years of employment of artificial mixers, the dominant effect
is linked to the outgassing of CO2 from land.

The reason for this outgassing is associated to drier conditions over the Amazo-
nian forest in the first decade of artificial mixing. This phenomenon can be deduced
looking at Figure 3.9a, which illustrates the evolution in time of the total (vertically
integrated) precipitable water (TMQ) over this region.

(A) Evolution in time of the total (ver-
tically integrated) precipitable water [kg
m−2] over the region of the Amazonian

forest.

(B) Evolution in time of the AMOC in-
dex [Sv].

FIGURE 3.9: EQATL_MED: the quantities shown in the plots are run-
ning averages over 5 years of the relative variables.
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Shortly after year 40, when the simulation branches in CTRL run and EQATL_MED
experiment, it is possible to see that the TMQ reaches a minimum value, which is
below the range of natural variability observed in the control simulation. This is a
consequence of lower sea surface temperature (see the vertical profile of temperature
after 1 year, Figure 3.10a), caused by the increase in the upwelling of colder water
from deeper layers. The cooling of the upper levels leads to variations in the evap-
oration fluxes and zonal wind pattern, which likely explain the lower TMQ values
over the South American continent.

Later in time, the temperature profile evolution (Figure 3.10a) shows a significant
warming in the whole water column, with an increase of almost 2◦C at z = 200 m
after 100 years of artificial mixing. This explains both the increase in TMQ and in the
carbon fluxes from the ocean, observed in the second phase of the experiment. The
warming is localized in the area where Kv is increased, as it is a direct consequence
of the higher ventilation in the upper 1000 m of the Equatorial Atlantic Ocean. Note
that the observed warming at low latitudes is not due to a weaker Atlantic Meridi-
onal Overturning Circulation (see Table 3.3 and Figure 3.9b).

In the last period of the simulation, the roles of the two components are reversed,
with the land component absorbing more atmospheric CO2 than in the control run
by the end of the simulation. The cumulative anomaly in the CO2 surface fluxes
at the end of the simulation is shown in Figure B.8b. Looking at this Figure, one
can see that the strongest sink of atmospheric CO2 at the end of the simulation is
found in the Amazonian region, while the strongest oceanic source region is in the
Equatorial Atlantic. Therefore, we can conclude that, after 100 years of artificial
mixing in these regions, the dominant effects are due to the thermodynamic forcing
(lower solubility of CO2 due to higher water temperatures). Note that, at the end
of the simulation, the POC production is about 4 times higher, on average, at the
surface of the Atlantic Ocean (see Figure 3.10b), with the strongest enhancement
being found in the Mediterranean Sea: this can indicate an increase in the sinking
of carbon, linked to higher nutrient availability in the upper layers and, as a result,
to a more efficient biological pump. However, this improvement is not high enough
to compensate for the reduction in the efficiency of the solubility pump, due to a
warmer oceanic upper layer and stronger upwelling of DIC.

(A) (B)

FIGURE 3.10: Evolution in time of the vertical profiles of temper-
ature [◦C] (3.10a) and POC production [mmol m−3 s−1] (3.10b) in
the EQATL_MED experiment, averaged over the Atlantic Ocean, and

compared with the mean profiles in the CTRL run.
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3.6.2 Increased Kv in the Northwestern Atlantic

Lastly, we focus on the results from the NWATL experiment.
In Figure B.9a, we can see the evolution in time of the carbon surface fluxes cu-

mulative anomaly. The dominant response is the continuous outgassing of CO2 from
the ocean, caused by the increase in pCOoce

2 (see Table 3.3). This effect is partially
compensated by an increase in the carbon uptake by the land component.

The relevant variations in the surface fluxes are mainly occurring over two re-
gions: in the ocean, the flux to the atmosphere increases in the North Atlantic, while
the carbon uptake from land increases in the Amazonian region.

Increasing Kv in the North Western Atlantic, the atmospheric response leads to a
systematic increase in the precipitation flux over this region, as it is shown in Figure
3.11b. The freshwater input anomaly in the North Atlantic can trigger a feedback
mechanism, causing a decline in the AMOC strengths. Looking at Figure 3.11a, it is
possible to observe that the AMOC index decreases steadily during the simulation,
with an instantaneous response at year 40, when the artificially enhanced mixing
starts.

A weaker AMOC reduces the efficiency of the solubility pump: this explains why
the strongest oceanic source of CO2 to the atmosphere in the experiment is found
the the North Atlantic (Figure B.9b). Warmer sea surface temperatures at lower lat-
itudes, on the other hand, are the likely reason for the increase in the carbon uptake
in the Amazonian region, similarly to what has been observed in the EQATL_MED
experiment.

(A) Evolution in time of the AMOC in-
dex [Sv].

(B) Evolution in time of the precipita-
tion flux [kg m−2 s−1] over the North

Atlantic Ocean.

FIGURE 3.11: NWATL experiment: the quantities shown in the plots
are running averages over 5 years of the relative variables.
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Discussion

4.1 Estimate of the power required to increase Kv

Using the OGCM included in the CSIRO Mk3L-COAL model, we found that, on
average, 7.7 kW km−2 are added to the system to increase Kv from the ocean sur-
face to a depth of 1000 m. Considering that the total area involved in the regional
experiments with CESM is ∼ 1× 107 km2, than the total power necessary for the
implementation of these configurations would be about 77 GW.

In order to avoid an increase in the energy demand due to the implementation
of this technique, we can imagine to extract power from ocean currents: this would
be a clean, local, renewable energy source, with the potential of supplying 75 GW
when we consider the Gulf Stream alone, according to the US Energy Department
(Ocean Energy).

However, large uncertainties characterise the attempts to evaluate the amount
of energy that can be extracted from ocean currents, since the available ocean tur-
bines have important technical limits at the moment: in particular, each technology
is developed to work at a specific range of depth and mean peak velocity.

The large energy demand could represent a limit for the implementation of any
mechanical geoengineering method, since the cost of application would be elevated
and they will have to be compensated by the mitigation of climate change.

In this project, we also observed that the total power needed to generate a mixing
hotspots can be reduced, for example, by varying the range of depth at which Kv is
implemented. If artificial mixing starts from z = 200 m and reaches z = 1000 m, the
power needed would be, on average, 3.2 kW km−2, with a reduction of almost 60 %
compared to the experiment starting from the surface of the ocean.

Therefore, future studies can try to optimize the implementation of mechanical
geoengineering method, by taking into account not only the oceanic response, but
minimizing the required power and economic costs.

Moreover, the optimization procedure can be improved, in order to identify the
minimum areas of the ocean where artificial mixers must be employed to signific-
antly reduce the atmospheric CO2 concentrations, maximizing the benefit linked to
the mitigation of climate change. This point will be further discussed in the follow-
ing Section.

4.2 Optimization procedure

In this project, we developed an optimization procedure to identify the locations
where a constant increase in Kv would lead to the largest reduction in the global
mean pCOoce

2 . As discussed in Section 3.4, a preliminary analysis led to a focus on
the Atlantic Ocean, since it emerged as the domain where the largest reduction in the
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global mean pCOoce
2 was found, within a limited number of model evaluations (see

Table 3.1). It would be interesting to deepen the analysis on the other domains dur-
ing future studies: in particular, the global experiments conducted with the CSIRO
climate model (Section 3.2) indicated that some of the largest, beneficial effects were
observed in the Pacific Ocean, for example along the western coasts of North and
South America. Moreover, other degrees of freedom could be introduced in the
problem, allowing for variations in the strength, sign and range of the Kv increment,
in order to optimize these problem variables.

Lastly, our results from the CESM simulations highlighted the importance of tak-
ing into account the atmospheric and land responses in the optimization procedure:
in fact, on decadal time-scales, the evolution of the Earth System response to this
perturbation is dominated by the variation in the precipitation pattern. Therefore,
the optimization algorithm should be coupled to an Earth System Model, allowing
to define as objective function a climate metric that combines all the relevant quant-
ities, in particular the variation in pCOatm

2 . Additional constraints can be introduced
to take into account the power added to the global ocean, the economic cost of the
implementation, and even the environmental impact of the method.
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Conclusion

In this project, we explored the potential of creating artificial sites of enhanced
diapycnal mixing to increase the oceanic carbon uptake. This method would repres-
ent an opportunity to implement an ocean-based mechanical geoengineering tech-
nique, affecting both the biological and the solubility pumps.

Using the OGCM included in the CSIRO Mk3L-COAL model, we found that ap-
proximately 7.7 kW km−2 are added to the system to increase Kv from the ocean
surface to a depth of 1000 m. The resulting variation in the global mean pCOoce

2 is
positive, but we observed reductions of this quantity over specific regions of the
ocean. We designed an optimization procedure to obtain a negative variation in the
global mean pCOoce

2 , and to maximize the magnitude of this reduction, by coupling
the OGCM with the NOMAD software. A preliminary analysis led us to focus on
the Atlantic Ocean. Using this domain, the optimization algorithm was proved to
be more efficient than using other search regions, and we individuated two regions
where an increase in Kv would lead to a reduction in the global mean pCOoce

2 : the
Equatorial Atlantic and the Mediterranean Sea. Testing this configuration with the
CESM, the fully coupled model confirmed the sign of the response from the air-sea
CO2 flux on the short time scales, with ∆Joce = −0.52 gC m−2 after 5 years of en-
hanced vertical mixing. The increase in the oceanic carbon uptake can be attributed
to the thermodynamic and biological forcing, since the first years of the experiment
are characterized by lower mean SST and higher POC production rates in the basin.
However, the global mean atmospheric CO2 concentration in the second half of the
100 years experiment increases by 3.4± 0.7 ppm. The reason for the increase, ini-
tially, is associated with the outgassing of CO2 by the terrestrial component, linked
to the effect that the variation of the temperature profile in the Atlantic Ocean has
on the precipitation pattern over South America. On longer timescales, the higher
atmospheric CO2 concentrations are maintained by a reduction in the solubility of
carbon at the ocean surface, due to warmer temperatures at low latitudes. After 100
years of artificial mixing, the POC production is about 4 times higher, on average,
at surface of the Atlantic Ocean; however, the increase in carbon sinking is not high
enough to compensate for the reduction in the efficiency of the solubility pump.

Similarly, in all the other configurations that we tested with the CESM, the dom-
inant responses on short time scales were linked to the effect of changes in the sea
surface temperature on the atmospheric processes. In particular, when a higher Kv
is simulated in the Northwestern Atlantic, a variation in the freshwater input leads
to a constant decline of the AMOC strength, causing a reduction in the efficiency of
the solubility pump. For this reason, the global mean pCOoce

2 increases by 1.2± 0.7,
on average, over the last 50 years of simulation.

Future studies should include the atmospheric and land responses in the optim-
ization procedure, in order to identify the configurations that lead not only to an



26 Chapter 5. Conclusion

increase the efficiency of the oceanic carbon pumps, but to an increase in the net
surface carbon flux from the atmosphere to the ocean and land components.
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Appendix A

The optimization problem

In this Appendix, we present in more detail the methods that we use to solve the
optimization problem, in which we aim to find the locations where an increase in
vertical mixing leads to a reduction in the global mean pCOoce

2 .
In order to do so, the OGCM of the CSIRO Mk3L climate model is coupled with

the Nonlinear Optimization by Mesh Adaptive Direct Search (NOMAD) software,
which is an implementation of the Mesh Adaptive Direct Search (MADS) algorithm
(Le Digabel et al., 2009). The MADS algorithms are developed from the General-
ized Pattern Search (GPS) class (Audet and Dennis, 2006), which solve optimization
problems without computing or explicitly approximate derivatives: therefore, these
algorithms are classified as Derivative-Free Optimization (DFO) methods (Torczon,
1997).

In the following paragraphs, we describe the MADS algorithm that is imple-
mented in the NOMAD software, and how we apply it for the resolution of our
optimization problem.

A.1 The MADS algorithm

In this Section, we summarize the most important definitions and properties of the
MADS algorithm, which is introduced in Audet and Dennis, 2006.

At each iteration k, the goal of the algorithm is to improve the current best solu-
tion xk ∈ Ω, by finding a solution xk+1 such that f (xk+1) < f (xk), having defined
the objective function f : Ω → R . To achieve this result, the method carries out a
SEARCH step. If this first phase is not successful, a POLL step follows. The third and
last step consists in the update of the current problem parameters. During the first
and second steps, the blackbox is evaluated at trial points lying on a discrete space
of variable: this structure is called mesh and it is defined by

Mk =
⋃

x∈Vk

{x + ∆m
k Dz : z ∈NnD} (A.1)

where:

• ∆m
k ∈ R+ is the mesh size parameter. The minimal mesh size is set to 1 in case

of integer variables, as it is in our applications.

• Vk is the set of points already chosen to evaluate the blackbox before iteration k.
The software stores all the information from previous iterations, and no double
evaluations occur.

• D is the set of mesh directions, i.e. a matrix representing a fixed finite set of nD
directions in the domain. Therefore, the dimension of D is 2n× nD, where 2n
is the dimension of the problem.
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The difference between the SEARCH and POLL steps lies in the degree of liberty
allowed to create the trial points.

In the NOMAD implementation of the SEARCH step, many different strategies
can be chosen, such as the Variable Neighborhood Search (VNS) (Audet, Béchard
and Le Digabel, 2008) or the Latin Hypercube (LH) Sampling (Tang, 1993). Moreover,
the user can choose between quadratic models or models provided by the surrogate
library to determine the search strategy (see Section A.2).

The flexibility allowed in the SEARCH step is motivated by the fact that the con-
vergence analysis does not rely on it, but on the POLL step. To guarantee this, the set
of poll trial points is defined as:

Pk = {xk + ∆m
k d : d ∈ Dk} ⊂ Mk (A.2)

with the following bound:

∆m
k ‖ d ‖≤ ∆p

k max
{
‖ d′ ‖: d′ ∈ D

}
(A.3)

where ∆p
k is the poll size parameter, and Dk is a set of directions. From Equation

A.3, we obtain that the distance of the points of Pk to the poll center xk is bounded
above by ∆p

k . The definitions of Dk and ∆p
k represent the main developments from

GPS to MADS algorithms (Audet and Dennis, 2006): in fact, in the GPS class Dk ⊂
D, while this might not be the case in MADS algorithms. The difference can be
visualized looking at Figure A.1.

Figure A.1 shows the three poll strategies already coded in NOMAD. We can see
that the GPS is the most rigid option, since it uses the coordinate directions. Or-
thoMADS directions are still orthogonal, but have greater flexibility: this is the de-
fault choice in NOMAD and, in general, it has proven to be the most efficient option
(Abramson et al., 2009). The last available technique (LT-MADS) involves random-
ness in the generation of the directions, using Lower-Triangular (LT) matrices.

FIGURE A.1: Difference between the GPS, LT-MADS and Or-
thoMADS in the case n = 2, nD = 2n and ∆p

k = 2∆m
k (Le Digabel,

2011).

As a last step of each iteration k, one of the following two options occurs:

1. we found a xk+1 such that f (xk+1) < f (xk), so xk+1 will substitute xk as best
feasible solution at the next iteration (successful iteration).

2. the iteration was unsuccessful: the mesh is refined by reducing ∆m
k and ∆p

k to
∆m

k+1 and ∆p
k+1.
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Note that ∆m
k < ∆p

k always, and ∆m
k is reduced faster that ∆p

k after an unsuccess-
ful iteration. In NOMAD, by default, the initial value of ∆p

0 is calculated from the
starting point (given as input), and ∆m

0 is calculated from ∆p
0 .

A.2 SGTELIB library

SGTELIB is the library for dynamic surrogates included in the NOMAD software.
Since the the blackbox is computationally expensive to evaluate, the use of com-

putationally cheaper surrogate functions might allow us to find a satisfying solution
in a shorter running time.

This library is used in the SEARCH step: it sorts the potential search trial points,
evaluating them on the surrogate function. After this preliminary analysis, only the
most promising points are tested using the blackbox.

The scheme in Figure A.2 illustrates how the surrogate library, the blackbox and
the optimization algorithm interact with each other.

FIGURE A.2: Scheme showing the interaction between blackbox and
NOMAD software. The surrogate functions s(x) can be used to sim-
ulate the behaviour of the real objective function f (x) (Le Digabel et

al., 2009).

A.3 Definition of the optimization problem

We will use the NOMAD software to identify the most promising locations where to
artificially increase vertical mixing Kv, as a mean to reduce the atmospheric carbon
concentration.

The objective function f (x) that we try to minimize is the global mean partial
pressure of CO2 at the surface of the ocean (pCOoce

2 ). The point x ∈ Ω ⊂N2n repres-
ents the set of coordinates of the n locations where Kv is incremented. Therefore, the
dimension of the problem is dim = 2n.

The efficiency of the algorithm depends on the dimension 2n of the problem, as
well as on the dimension and shape of the search region.

For this reason, we vary the number n of mixing hotspots, and we test four do-
mains, which are shown in Figure A.3.



30 Appendix A. The optimization problem

(A) Atlantic Ocean. (B) Pacific Ocean.

(C) Indian Ocean. (D) Global ocean.

FIGURE A.3: Maps of the four search regions used during the resolu-
tion of our optimization problem.

Note that the resolution of the search regions is lower than the resolution of
the OGCM, with one potential mixing hotspot extending over 4 × 4 ocean model
columns. This is done to reduce the size of the search region, and reduce the num-
ber of evaluations that are necessary to find a satisfying solution.

A.4 The blackbox

At each iteration, the NOMAD software generates a new set of coordinates x, which
is given as input to our blackbox.

Firstly, the blackbox verifies that x lies in the domain Ω. As we can see in Figure
A.3, the search regions are highly fragmented, while the NOMAD software can only
select the trial points x = {x1, x2, ..., x2n} using a lower and upper bound for each
variable xi, i = 1, ... 2n. Therefore, a trial point can frequently contain locations that
are outside the domain, or indicate twice the same location. In order to have exactly
n mixing hotspots at each model evaluation, the blackbox checks if it is necessary to
change a pair of coordinates. If that is the case, the location is moved using a "de-
terministic spiral walk", similarly to the approaches used to find the optimal solution
in a highly fragmented domain in previous studies (Alarie et al., 2013). Firstly, the
four neighbouring model grid-cells are tested. If those locations are still not feasible,
the radius is extended and the four cells at a distance r = 2 from the original loca-
tion are considered. If no feasible location is found before extending the radius to
r = rmax, a large value is assigned to f (x) without running the ocean model, so that
the iteration is automatically unsuccessful.
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If x ∈ Ω, a mask is generated and given as input to run the OGCM for a 5-
year simulation. Subsequently, the model output is processed to calculate the global
mean pCOoce

2 in the last year of the simulation.
One blackbox evaluation is completed in ∼ 20 minutes. Note that the computa-

tional cost of the blackbox is entirely due to the OGCM simulation, since the gener-
ation of the model input and output processing take only a few seconds.
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Additional Figures

B.1 Global mixing experiments with the OGCM

We present here the Figures relative to the results discussed in Section 3.2.

FIGURE B.1: Evolution in time [years from the employment of artifi-
cial mixers] of the global mean pCOoce

2 [ppm] when Kv is incremented
everywhere, from the ocean surface (dashed line) or from z = 200 m

(solid line), until a depth of 1000 m.

FIGURE B.2: Mean vertical profile of the power [W] added in 1 model
column (averaged over 20 years of simulation) when Kv is incremen-
ted everywhere, from the ocean surface (dashed line) or from z = 200

m (solid line), until a depth of 1000 m.
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(A) After 2 years of artificial mixing. (B) After 5 years of artificial mixing.

(C) After 10 years of artificial mixing. (D) After 15 years of artificial mixing.

(E) After 25 years of artificial mixing. (F) After 45 years of artificial mixing.

FIGURE B.3: Evolution in time of the distribution of the variation in
∆pCO2 [ppm] when Kv is incremented everywhere, from z = 0 m

until z = 1000 m.
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(A) (B)

(C) (D)

(E) (F)

FIGURE B.4: Comparison between the variation in ∆pCO2 [ppm]
(B.4a and B.4b), SST [◦C](B.4c and B.4d) and DIC concentration [mmol
m−3] (B.4e and B.4f) after 1 year (left column) and after 45 years (right
column) of mixing enhancement, at all locations, from z = 0 m until
z = 1000 m. Note that only regions characterized by negative vari-
ations are shown, to highlight the areas where the increment of Kv is

potentially beneficial for the oceanic carbon uptake.
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(A) (B)

(C)

FIGURE B.5: Variation in ∆pCO2 [ppm] (B.5a), POC production [gC
m−2 yr−1 ](B.5b), and SST [◦C](B.5c) after 20 years of mixing en-
hancement, at all locations, from z = 200 m until z = 1000 m. Note
that only regions characterized by negative variations are shown in
B.5a and B.5c (only positive variations in B.5b), to highlight the areas
where the increment of Kv is potentially beneficial for the oceanic car-

bon uptake.
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B.2 Global hotspots experiments with the OGCM

The following Figures are relative results discussed in Section 3.3.

(A) After 2 years of artificial mixing. (B) After 5 years of artificial mixing.

(C) After 10 years of artificial mixing. (D) After 15 years of artificial mixing.

(E) After 25 years of artificial mixing. (F) After 45 years of artificial mixing.

FIGURE B.6: Evolution in time of the distribution of the variation in
∆pCO2 [ppm] when Kv is incremented at the locations indicated in

Figure 3.2, from z = 0 m until z = 1000 m.
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(A) (B)

(C) (D)

(E) (F)

FIGURE B.7: Comparison between the variation in ∆pCO2 [ppm]
(B.7a and B.7b), SST [◦C](B.7c and B.7d) and DIC concentration [mmol
m−3] (B.7e and B.7f) after 1 year (left column) and after 45 years (right
column) of mixing enhancement, at the locations indicated in Figure
3.2, from z = 0 m until z = 1000 m. Note that only regions character-
ized by negative variations are shown, to highlight the areas where
the increment of Kv is potentially beneficial for the oceanic carbon

uptake.
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B.3 CESM simulations: regional experiments

Here we present the Figures described in Section 3.6.

B.3.1 EQATL_MED experiment

(A) (B)

FIGURE B.8: Evolution in time (B.8a) and distribution at the end of
the simulation (B.8b) of the CO2 surface fluxes cumulative anomaly

[g C m2] in the EQATL_MED experiment.

B.3.2 NWATL experiment

(A) (B)

FIGURE B.9: Evolution in time (B.9a) and distribution at the end of
the simulation (B.9b) of the CO2 surface fluxes cumulative anomaly

[g C m2] in the NWATL experiment.
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