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Abstract 
 
 

Volcanic eruptions exert the most important radiative forcing on Earth’s climate during 

the pre-industrial interval of the last millennium. In this thesis, I investigate the role of volcanic 

eruptions in altering tropical climate, including temperature and rainfall. I primarily use forced 

transient simulations of the last millennium as a tool to explore how explosive volcanic events 

project onto the hydrologic cycle, as well as the imprint of water isotopologues (H2
16O, H2

18O) 

associated with rainfall. Attention is given to the South American continent specifically (in 

chapter 2), and to the entire tropics (in chapter 3).  

In Chapter 2, I show that volcanic eruptions cool the South American continent and alter 

rainfall, decreasing the intensity of the austral summer monsoon, and decreasing rainfall in the 

northern part of the continent during austral winter. These factors also conspire to influence the 

isotopic signal left behind, informing the detectability of volcanic excursions in the paleoclimate 

record and the anticipated hydroclimate response at the continental scale for future eruptions.  

The results of chapter 2 emerge from a simple composite response to many of the largest 

volcanic eruptions during the last millennium and instrumental period. In chapter 3, I advocate 

for a more targeted approach in how volcanic eruptions are stratified when interpreting physical 

responses or comparing to past records; in particular, I highlight the role of the spatial structure 

in volcanic forcing in altering the mean intertropical convergence zone (ITCZ) position, and the 

associated response of different monsoon systems. The main finding in chapter 3 is that the ITCZ 

moves away from the preferentially forced hemisphere, which leads to unique ENSO behavior, 

river discharge anomalies, or patterns in isotopic anomalies, depending on the location of the 

eruption. In this chapter, I also make contact with recent advances in understanding ITCZ 
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migrations through the lens of the atmospheric energy budget. I discuss the significance of these 

findings for interpreting the paleoclimate record. 

In chapter 4, I expand upon chapter 3 by quantifying individual feedbacks (including 

water vapor and clouds) that arise in response to different spatial structures of volcanic forcing. I 

demonstrate that cloud and water vapor distributions differ dramatically for aerosol loadings that 

are northern hemisphere focused, southern hemisphere focused, or fairly symmetric about the 

equator. Such feedback differences may amplify or dampen ITCZ movements or complicate 

inferences of how feedbacks are expected to behave in a warming world.  
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radiation indicate an energy loss term for the atmosphere, so positive values on the horizontal 

axis indicate preferential clear-sky SW reflection and a stronger sink of energy in the NH. 

Results are shown for global (0°N-90°N minus 0°S-90°S), tropical (0°N-30°N minus 0°S-30°S), 

and extratropical (30°N-90°N minus 30°S-90°S) domains. All datapoints represent individual 

eruptions after averaging over the five ensemble members…………………………...    pg. 187 
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Chapter 1 
 

Introduction 
 
1.1.  Opening 

“During several of the Summer Months of the Year 1783, when the Effect of the 

Suns Rays to  heat the Earth in these northern Regions should have been greatest, 

there existed a constant Fog over all Europe. This Fog was of a permanent 

Nature; it was dry, and the Rays of the Sun seem’d to have little Effect towards 

dissipating it, as they easily do a moist Fog arising from Water. They were indeed 

rendered so faint in passing thro’ it, that when collected in the Focus of a Burning 

Glass they would scarce kindle brown Paper; Of course their Summer Effect in 

heating the Earth was exceedingly diminished. Hence the Surface was early 

frozen… 

 

Hence the first Snows remained on it unmelted, and received continual Additions. 

 

The Cause of this Universal Fog is not yet ascertained. Whether it was 

adventitious to this Earth, and merely a Smoke proceeding from the Consumption 

by Fire of some of those great burning Balls or Globe which we happen to meet 

with in our rapid Course round the Sun, and which are sometimes seen to kindle 

and be destroy’d in passing our Atmosphere, and whose Smoke might be attracted 

and retain’d by our Earth: Or whether it was the vast Quantity of Smoke, long 

continuing to issue during the Summer from Hecla in Iceland, and that other 

Volcano which arose out of the Sea near that Island; which Smoke might be 

spread by various Winds over the northern Part of the World; is yet uncertain.” 

-Benjamin Franklin 

 

 

The above quote, written over 200 years ago by Benjamin Franklin (Franklin, 1784) was 

perhaps the first attempt to link volcanism and atmospheric phenomena, in particular when a 

strange ‘‘dry fog’’ (a sulfate haze resulting from tropospheric oxidation of volcanogenic sulfur 

gases) and unseasonably cold weather struck Europe. Franklin also suggests in the quote that a 

meteorite may have been responsible. However, there was indeed a major eruption in Iceland 

(albeit Laki, not Hekla, which is ~75 km away) in 1783-1784, one of the largest volcanic 

eruptions in recorded historical times. The Laki eruption produced ~14.7 km3 of basaltic lava 
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(Thordarson and Self, 1992), a volume sufficient to cover New York City (~789 km2 in area) 

with over 18 meters in basalt. In Iceland, the haze lead to the loss of most of the island's 

livestock (from eating fluorine contaminated grasses), crop and vegetation failure (due to acid 

rain), and because of famine and disease, the death of ~20% of the country's human residents 

(Thordarson and Self, 2003). 

Volcanic eruptions are very important for society, and have strongly impacted past cities 

and civilizations (e.g., an eruption at Santorini in Greece at ~1620 B.C. produced a thick layer of 

pumice and ash that buried Bronze Age settlements and permanently altered the local 

topography, see Friedrich et al., 2006; or the 79 A.D. Vesuvius eruption that deposited large 

quantities of ash onto the buildings of the Roman city, Pompeii). In 1883, the eruption of 

Krakatoa in Indonesia destroyed hundreds of villages and killed ~33,000 people. In 1902, the 

Pelée eruption in the Caribbean killed ~29,000 people (e.g., Luong et al., 2003).  

Historical paintings reflect changes in the color of the sky following large eruptions due to 

the optical effects of the volcanic cloud, and in fact the ambitious task of using red-to-green 

ratios in historical artwork to reconstruct paleo- aerosol optical depths has been undertaken 

(Zerefos et al., 2014). The optical effects caused by Tambora for several years following 1815 

have been widely reported, including sunspots seen from the naked eye, dimming of the moon 

and stars in a clear-sky atmosphere, and prolonged sunsets and twilights observed near London, 

features that have been used to calculate visible optical depths (Stothers, 1984).  

Volcanic eruptions also impact air travel, as with the Icelandic Eyjafjallajökull eruption in 

2010. Since the residence time of ash can be as long as weeks, the ash does not have a strong 

climate impact but is able to paralyze air traffic far away from the source. Eyjafjallajökull caused 
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the cancellation of 108,000 flights, particularly in Europe, disrupted the travel plans of 10.5 

million passengers, and cost the airline industry in excess of $1.7 billion (Budd et al., 2011).  

Many eruptions of the sort described above are therefore of interest as a geologic hazard 

and to historians and archeologists. However, in many cases, the aerosol cloud is primarily 

restricted to the troposphere and the volcanic material (see next section) falls out on timescales 

of days to weeks, leaving minimal long-term impact extending beyond the recovery timescale of 

that which was affected by the eruption.  

Explosive stratovolcanic events provide an extra dimension to the impact of volcanic 

eruption. The 1815 Tambora eruption (on the Indonesian island of Sumbawa), for instance, 

immediately killed tens of thousands of people people, but the impacts of the volcano were felt 

worldwide due to significant global cooling (Oppenheimer, 2003; Raible et al., 2016), resulting 

in major changes to European and North American weather, as well as crop failures. The 

eruption allegedly inspired Mary Shelley’s “Frankenstein” while North America experienced the 

so-called “Year without a Summer” (anecdotally, summer frosts were pervasive in the northeast 

United States and snowfall was recorded in June in Albany, NY; Baron, 1992). Limited 

instrumental measurements suggest Northern Hemisphere (NH) temperatures dropped by ~1°C 

in 1816 (Stothers, 1984).  

 

1.2.  Volcanoes and Climate— A primer 
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This remainder of this thesis focuses on the climate impact of volcanic eruptions, 

especially on tropical hydroclimate and during the last millennium (LM)1. I also stress the 

relatively short-to-intermediate impact (~seasons to years) following volcanic eruptions, which 

approximately corresponds to the residence time of sulfate aerosols that form in the stratosphere. 

Indeed, it is now recognized that the metric most closely related to the volcanic projection onto 

climate is the sulfur dioxide (SO2) emissions from volcanoes, not necessary the explosivity, 

volume of erupted magma, or ash injection (Pollack et al., 1976; Rampino and Self, 1984). 

Volcanoes also emit Hydrogen Sulfide (H2S) that is rapidly converted to SO2, along with 

Halogens, CO2, and water vapor. The oxidation of SO2 by OH and subsequent reactions yield 

sulfuric acid vapor (H2SO4) that condenses onto particles to form sulfate aerosols, typically at 

sizes similar to a visible wavelength and where scattering of solar radiation is strongest.  

It would be possible for eruptions to warm the surface if the sulfate aerosols were very 

small or large (<0.05m or >2.2m; see e.g., Coakley and Grams, 1976; Lacis et al., 1992). In 

the former case, scattering is very small; for the large particle limit, the thermal component 

begins to increase with particle size while scattering asymptotes to a constant value as particle 

size becomes larger than the contributing solar wavelengths (Lacis, 2015). Thus, for large 

particles, the shortwave and longwave contributions will be of comparable magnitude. The 

longwave component also depends on the height of the aerosol, since the greenhouse effect 

depends upon the temperature difference between the surface and emission layer. However, 

particles are only very small in their formative stages, and if very large, tend to fallout quickly, 

leaving intermediate size particles (where solar scattering dominates) as the expected players to 

                                                 
1 This will refer to either the 850-1850 or 850-2005 C.E. interval, corresponding to the pre-industrial LM and 

historical simulation period for the experiments in CMIP5/PMIP3. The study in chapter 2 includes the historical 

extension period, but chapter 3 does not.  
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the perturbation in the stratospheric aerosol layer. Thus, large sulfur-rich volcanic excursions 

will almost always be expected to cool the terrestrial climate. 

Sulfate aerosols typically heat the stratosphere via absorption of longwave radiation, but in 

principle could cool the stratosphere if injected in the upper stratosphere, because of the higher 

local temperatures and increased efficiency for cooling to space (Lacis, 2015) relative to the 

capacity for absorbing upwelling radiation from lower layers. Stratospheric temperatures are 

observed to increase in the lower and mid stratosphere following the El Chichón (April 1982) 

and Mt. Pinatubo (June 1991) eruptions (Randel et al., 2016). For large tropical eruptions, the 

stratosphere warming results in anomalous temperature gradients aloft between the equator and 

poles, and an enhancement of the polar vortex. This has been implicated in leading to warming 

over sectors of the northern mid-latitudes during boreal winter (e.g., Robock and Mao, 1992; 

Kirchner et al., 1999; Shindell et al., 2004; Stenchikov et al., 2004, 2006) via dynamical 

responses in the jet stream that overcome the direct radiative effects of shortwave scattering in 

the winter high-latitudes. This highlights a difference between tropical and high latitude 

eruptions. However, fewer studies have targeted the implications of hemispheric asymmetry in 

the aerosol loading until very recently, which I visit in chapter 3. 

The fragmented magmatic material forming the ash of the eruption is comprised of larger 

(typically >10m to mm) and settles out quickly, leaving behind the aforementioned sulfur gases 

that form the enduring aerosol layer of concentrated sulfuric acid. It is worth noting that 

explosive eruptions may have a relatively small sulfur injection. For example, Mt. St. Helens in 

1980 was very explosive but did not put much sulfur into the stratosphere, thus resulting in 

minimal climate impact (Robock, 1981). Similarly, sulfur-rich eruptions that are not sufficiently 

explosive to protrude into the stratosphere will have little climate impact. In fact, annual 
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anthropogenic SO2 emissions are larger than background eruption fluxes or even the input from a 

Pinatubo-sized eruption. However, the actual sulfur burden from volcanoes and human activity is 

comparable (Graf et al., 1997), due to the fact that the sulfur is often injected at higher elevations 

with volcanoes, even for background tropospheric eruptions. However, volcanoes dominate the 

variability in stratospheric loading where the residence time is much longer. Thus, the residence 

time for volcanic SO2 is higher than for anthropogenic SO2. Water vapor released in the eruption 

also affects atmospheric chemistry and the rate of sulfate formation (LeGrande et al., 2015), 

although a proper treatment of chemistry in models is in its infancy and not the way volcanic 

forcing is implemented in the Coupled Model Intercomparison Project Phase 

5(CMIP5)/Paleoclimate Model Intercomparison Project Phase 3 (PMIP3) generation of GCM’s.  

CMIP5/PMIP3 is the most recent iteration of coordinated model experiments with multiple 

contributing groups (Braconnot et al., 2012; Taylor et al., 2012); the simulations covering the 

period 850-1850 C.E. as part of the past1000 initiative (with some groups contributing historical 

extensions to these runs) are a subset of the contributing target paleo time intervals (along with 

the Last Glacial Maximum and mid-Holocene). Notably, the past1000 runs are transient 

simulations using the same model versions as for future projections, and include sporadic 

volcanic activity in the input forcing, allowing for a greater sample of events to be probed than is 

possible using just the instrumental period. 

The most recent climatically meaningful volcanic excursion was that of Mt. Pinatubo in 

1991, which briefly interrupted the ongoing long-term global warming trend (Figure 1.1) and 

helped produce global cooling by up to ~0.5 °C despite the concurrent El Niño at the time (the 

effects of ENSO are linearly removed in Figure 1.1, which amplifies the Pinatubo influence). 

Such cooling also emerges in a composite sense when considering the largest eruptions during 
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