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Abstract

Realistic model representation of ocean phytoplankton is important for simulating nutrient cycles and the biological carbon

pump, which affects atmospheric carbon dioxide (pCO2) concentrations and, thus, climate. Until recently, most models as-

sumed constant ratios (or stoichiometry) of phosphorous (P), nitrogen (N), silicon (Si), and carbon (C) in phytoplankton,

despite observations indicating systematic variations. Here, we investigate the effects of variable stoichiometry on simulated

nutrient distributions, plankton community compositions, and the C cycle in the preindustrial (PI) and glacial oceans. Using

a biogeochemical model, a linearly increasing P:N relation to increasing PO4 is implemented for ordinary phytoplankton (PO),

and a nonlinearly decreasing Si:N relation to increasing Fe is applied to diatoms (PDiat). C:N remains fixed. Variable P:N

affects modeled community composition through enhanced PO4 availability, which increases N-fixers in the oligotrophic ocean,

consistent with previous research. This increases the NO3 fertilization of PO, the NO3 inventory, and the total plankton

biomass. Surface nutrients are not significantly altered. Conversely, variable Si:N shifts south the Southern Ocean’s meridional

surface silicate gradient, which aligns better with observations, but depresses PDiat growth globally. In Last Glacial Maximum

simulations, PO respond to more oligotrophic conditions by increasing their C:P. This strengthens the biologically mediated C

storage such that dissolved organic (inorganic) C inventories increase by 34-40 (38-50) Pg C and 0.7-1.2 Pg yr-1 more particulate

C is exported into the interior ocean. Thus, an additional 13-14 ppm of pCO2 difference from PI levels results, improving model

agreement with glacial observations.
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Key Points: 10 

• Variable C:P allows more physiological and ecological interactivity in plankton thereby 11 
increasing the biological carbon pump.  12 

• Variable Si:N affects ocean carbon cycling little but better constrains diatom and Si 13 
simulations. 14 

• Changes in glacial-interglacial phytoplankton C:P enhances ocean C sequestration and 15 
reduces atmospheric CO2 by 13 – 14 ppm.  16 
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Abstract 17 

Realistic model representation of ocean phytoplankton is important for simulating 18 

nutrient cycles and the biological carbon pump, which affects atmospheric carbon dioxide 19 

(pCO2) concentrations and, thus, climate. Until recently, most models assumed constant ratios 20 

(or stoichiometry) of phosphorous (P), nitrogen (N), silicon (Si), and carbon (C) in 21 

phytoplankton, despite observations indicating systematic variations. Here, we investigate the 22 

effects of variable stoichiometry on simulated nutrient distributions, plankton community 23 

compositions, and the C cycle in the preindustrial (PI) and glacial oceans. Using a 24 

biogeochemical model, a linearly increasing P:N relation to increasing PO4 is implemented for 25 

ordinary phytoplankton (PO), and a nonlinearly decreasing Si:N relation to increasing Fe is 26 

applied to diatoms (PDiat). C:N remains fixed. Variable P:N affects modeled community 27 

composition through enhanced PO4 availability, which increases N-fixers in the oligotrophic 28 

ocean, consistent with previous research. This increases the NO3 fertilization of PO, the NO3 29 

inventory, and the total plankton biomass. Surface nutrients are not significantly altered. 30 

Conversely, variable Si:N shifts south the Southern Ocean’s meridional surface silicate gradient, 31 

which aligns better with observations, but depresses PDiat growth globally. In Last Glacial 32 

Maximum simulations, PO respond to more oligotrophic conditions by increasing their C:P. This 33 

strengthens the biologically mediated C storage such that dissolved organic (inorganic) C 34 

inventories increase by 34-40 (38-50) Pg C and 0.7-1.2 Pg yr-1 more particulate C is exported 35 

into the interior ocean. Thus, an additional 13-14 ppm of pCO2 difference from PI levels results, 36 

improving model agreement with glacial observations. 37 

1. Introduction 38 

Surface ocean plankton redistribute nitrogen (N), phosphorus (P), and carbon (C) to the 39 

deep ocean via incomplete respiration of sinking organic matter. Thereafter, respiration 40 

continues but remineralized nutrients assume the long residence times of deep ocean water 41 

masses, effectively sequestering them from the climate system. This process, known as the 42 

biological pump, increases the influx of atmospheric CO2 (pCO2) thereby influencing the global 43 

climate (McKinley et al., 2017; Sarmiento & Gruber, 2006; Sigman et al., 2010; Volk & Hoffert, 44 

1985). Some C remains bound in the structures of dissolved organic molecules, termed dissolved 45 

organic carbon (DOC), but is not significantly chemically reactive to the air-sea exchange 46 

(Lønborg et al., 2020). DOC is then an additional long-lasting, depth-independent sink in the 47 
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inorganic ocean C cycle that allows further ocean C uptake (Jiao et al., 2010; Lønborg et al., 48 

2020). For simplicity, we include the DOC cycle in the definition of “biological C pump.” The 49 

oceanic biological carbon pump’s influence on the global climate has long been documented 50 

(Bisson et al., 2020; Falkowski, 2012; Field et al., 1998; Houghton, 2007; Nowicki et al., 2022). 51 

Briefly, oceanic primary producers are estimated to export ~5–12 Pg C yr-1 and account for 52 

~50% of the global annual net primary production (NPP), in carbon, matching the terrestrial C-53 

fixation rates (Field et al., 1998; Nowicki et al., 2022). Thus, the biological carbon pump can 54 

notably influence climate and must be simulated properly in global climate models.  55 

In 1934, a close correlation between inorganic nutrient and carbon concentrations in the 56 

ocean was observed by A. Redfield, leading him to suggest that, on average, plankton have 57 

approximately constant C:N:P (Redfield, 1934) and that this ratio controls the relative quantities 58 

of biogeochemical elements in ambient seawater (Redfield, 1958). This work has since strongly 59 

influenced oceanography including the construction of global models with constant elemental 60 

compositions (stoichiometry), which have been the norm until relatively recently (Martiny et al., 61 

2013). Overturning this paradigm is the well-documented adaptability of phytoplankton to 62 

nutrient availability variations and recently discovered systematic variations from Redfield’s 63 

stoichiometry (C. Garcia et al., 2018; N. Garcia et al., 2018; Geider & LaRoche, 2002; 64 

Klausmeier et al., 2004; Martiny et al., 2013; Weber & Deutsch, 2010). Phytoplankton, thus, can 65 

lower their cellular quota for scarce nutrients while continuing to fix carbon, which is typically 66 

more abundant (Galbraith & Martiny, 2015; Klausmeier et al., 2004; Martiny et al., 2013; 67 

Moreno & Martiny, 2018). 68 

While computationally inexpensive, the fixed stoichiometry simplification limits realism 69 

(Flynn, 2010). The canonical fixed C:N:P of phytoplankton, in addition to fixed Si:N, may be 70 

representative of the whole ocean average but its usage in global climate models smooths the 71 

spatial variability of the carbon pump. As shown in this study and others, fixed ratios can impede 72 

accurate simulations of primary producers, their population dynamics, ocean nutrient 73 

distributions, and the biological pump (Galbraith & Skinner, 2020; Matsumoto et al., 2020; 74 

Ödalen et al., 2020; Tanioka & Matsumoto, 2017). Model performance is thereby limited in 75 

simulating realistic ocean carbon cycling under various climate states. The ocean modeling 76 

community has started to include variable stoichiometric ratios in their simulations but few 77 
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capture any variability between the three primary macronutrients (C, N, and P) (Séférian et al., 78 

2020). Most of the CMIP 5 and 6 models have fixed ratios or only carry some form of 79 

micronutrient to macronutrient variability, e.g., Fe:P (Pahlow et al., 2020; Séférian et al., 2020). 80 

Otherwise, only a handful of fully coupled earth systems models use variable macronutrient 81 

ratios, of which, three have studied the glacial C cycle implications: MESMO2 (Matsumoto et 82 

al., 2020), cGENIE (Ödalen et al., 2020), and CSIRO Mk3L-COAL (Buchanan et al., 2019b). 83 

Although, several simple box models have demonstrated the implications of variable 84 

stoichiometry (Galbraith & Martiny, 2015; Moreno et al., 2018; Weber & Deutsch, 2010). 85 

Here, we implement variable stoichiometry schemes in an intermediate complexity 86 

climate/ocean model to allow a more interactive and responsive ocean carbon cycle. The C:P and 87 

Si:N schemes are incrementally applied to individual plankton functional types (PFT) to 88 

precisely highlight the full implications of capturing realistic biogeochemical interactions. We 89 

also tune the new model slightly in a third experiment. These three configurations will be 90 

collectively referred to as the variable stoichiometry models (VSMs). 91 

The ordinary phytoplankton (PO) C:P increases as ambient PO4 concentrations decrease, 92 

as observed in collected particulate organic matter (POM) (Galbraith & Martiny, 2015; Martiny 93 

et al., 2013). The C:P variability can be induced by changes in the relative amounts of organic 94 

molecules, e.g., proteins versus RNA, changes in nutrient resource storage, or taxonomic shifts 95 

within a community (Geider & La Roche, 2002; Inomura et al., 2022; Liefer et al., 2019). C:N 96 

was observed as mostly constant with planktonic heterotrophs exhibiting stable C:N:P (Ho et al., 97 

2020). 98 

Diatoms (PDiat) are phytoplankton that construct siliceous cell walls (or frustules) and 99 

contribute to biological C storage not only through comprising a substantial portion (~1/5) of 100 

global primary production but also through their frustules-enabled efficient sinking of organic C 101 

to the deep ocean (Hildebrand & Lerch, 2015; Lafond et al., 2020; Zúñiga et al., 2021). PDiat 102 

continue to consume silicic acid, referred to simply as Si hereafter, from ambient seawater even 103 

as other nutrients become scarce. Both in situ observations and culture experiments have shown 104 

that the Si:N of PDiat increases as Fe concentration decreases (Franck et al., 2000; Hutchins & 105 

Bruland, 1998; Takeda, 1998). It is hypothesized that the formation rate of soft organic PDiat 106 
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tissue slows faster with Fe limitations than the formation of hard siliceous tissue (Franck et al., 107 

2000; Meyerink et al., 2017).  108 

The biological carbon pump may thus respond to different environmental and climatic 109 

settings through changes in the stoichiometry of phytoplankton (Moreno et al., 2018). The 110 

implications of these C:P and Si:N observations on our mechanistic understanding of biosphere-111 

climate interactions are not well understood (Galbraith & Martiny, 2015; Lafond et al., 2020; 112 

Moreno et al., 2018; Moreno & Martiny, 2018; Séférian et al., 2020). We attempt, here, to 113 

illuminate some of those mechanisms and better understand the Last Glacial Maximum (LGM) 114 

to Preindustrial (PI) climate shift which promotes understanding of future climate evolution 115 

(Tierney et al., 2020). 116 

Variable stoichiometry may have played a significant role in carbon cycling during past 117 

climate states such as the LGM when pCO2 was 90-100 ppm lower than PI levels (Barnola et al., 118 

1987; Bouttes et al., 2011; Du et al., 2020; Galbraith & Martiny, 2015; Lüthi et al., 2008; 119 

Marcott et al., 2014; Petit et al., 1999). The biological carbon pump has been suggested to be 120 

partially responsible for this pCO2 drawdown, but most previous modeling studies used fixed 121 

stoichiometric ratios and can only explain a portion of this reduction (Brovkin et al., 2007; 122 

Buchanan et al., 2019b; Khatiwala et al., 2019; Kohfeld et al., 2005). Two prior studies that have 123 

used flexible stoichiometry (C:P and C:N) noted an additional 11-20 ppm reduction driven by an 124 

enhanced ocean biological C storage (Matsumoto et al., 2020; Ödalen et al., 2020).  125 

Here we confirm those results, but we identify additional mechanisms that increase C 126 

storage. Larger primary producer biomasses are supported through improved cohabitation 127 

between PFTs. We also identify and quantify the DOC component of biological C storage, which 128 

responds similarly to variable stoichiometry as the dissolved inorganic C (DIC) inventory. The 129 

resulting LGM climate simulations are closer to reconstruction estimates from observed pCO2 130 

data than simulations without flexible stoichiometry (Bereiter et al., 2015; Ivanovic et al., 2016; 131 

Kageyama et al., 2017). Our results suggest that the LGM biological carbon storage was stronger 132 

than previous fixed-stoichiometry simulations suggested and likely contributed to the ocean’s 133 

LGM pCO2 sequestration (Galbraith & Martiny, 2015; Galbraith & Skinner, 2020; Sigman & 134 

Boyle, 2000). 135 
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2. Materials and Methods 136 

2.1. Model Description 137 

This study uses the University of Victoria Earth System Climate Model (UVic-ESCM) 138 

version 2.9, a three-dimensional ocean general circulation model (GCM) coupled to single-layer 139 

atmospheric energy-moisture balance, land surface with dynamic vegetation, and dynamic-140 

thermodynamic sea ice modules (Meissner et al., 2003; Mengis et al., 2020; Weaver et al., 2001). 141 

The ocean has a coarse resolution of 3.6° ⨯ 1.8° horizontally with 19 vertical levels. Coupled to 142 

UVic-ESCM is the Model of Ocean Biogeochemistry and Isotopes (MOBI) version 2.1_08 143 

which simulates interactive nutrient cycles (phosphate (PO4), nitrate (NO3), iron (Fe), and silicon 144 

(Si)), their associated particulate and dissolved organic phases, oxygen, carbon, detritus, and four 145 

PFTs: PO, diazotrophs (PDiaz) as our N-fixers, PDiat, and zooplankton (PZ) (Figure 1) (Muglia et 146 

al., 2017; Somes et al., 2010; Somes & Oschlies, 2015). Plankton growth rates are Monod 147 

functions of nutrients, temperature, and light (Sarmiento & Gruber, 2006). They are structured to 148 

consume dissolved organic P (DOP) when it is more plentiful than PO4; this is not so for DON 149 

and NO3 (Somes & Oschlies, 2015). C:N is 7:1 for all biological variables. In the fixed 150 

stoichiometry (Control) model, N:P is 16:1 for all plankton except for PDiaz for which it is 40:1. 151 

For PDiat, a C:Si of 7.7:1 is used.  152 

While whole ocean P and Si are conserved, the N inventory responds interactively to 153 

imbalances between N fixation and denitrification (Kvale et al., 2021). Water column and 154 

benthic denitrification schemes, which respire organic matter in suboxic environments (O2 < 5 155 

μM), are described by Somes & Oschlies (2015). N isotopes are traced through the model and 156 

are sensitive to biological processes (Schmittner et al., 2013; Somes et al., 2010). Because 157 

portions of the ocean C cycling depend on the N cycling, C and Alkalinity are not strictly 158 

conserved. Calcium carbonate (CaCO3) and silicon cycling are based on modified models of 159 

(Kvale et al., 2015) and (Kvale et al., 2021), respectively. Where applicable, modeled nutrient 160 

fields were initialized from World Ocean Atlas, 2013 datasets (H. Garcia et al., 2013; Letscher et 161 

al., 2013; Mather et al., 2008).  162 

 Upon mortality, plankton’s particulate organic matter (POM) is divided into labile, semi-163 

labile, and semi-recalcitrant categories for the mass exchange between various inventories. The 164 
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plankton group, while the dashed lines show the flow back into the organic and inorganic 180 

inventories. 181 

2.1.1. Variable P:N 182 

 Because N is the basic currency for the biological variables in this model, we converted 183 

the variable P:C model of Galbraith and Martiny (2015) (hereafter GM15) to a variable P:N 184 

model using the constant C:N (Figure 2 and equation 1). For analysis purposes, we use the more 185 

intuitive reciprocal (N:P) and the C:P multiple. Tanioka and Matsumoto’s (2017) C:P model is 186 

neglected here due to its bias toward observed high C:P values at low PO4. Our PO, to which 187 

variable N:P is applied, inhabit and are the predominant PFT in the low PO4 domain. 188 𝑃: 𝑁 (‰)  = 42‰ + 48.3‰ 𝑚ଷ𝑚𝑚𝑜𝑙ିଵ × ሾ𝑃𝑂ସ(𝑚𝑚𝑜𝑙 𝑚ିଷ)ሿ          (1) 189 

The observations analyzed by GM15 indicate stable C:N ratios over a broad range of 190 

surface nutrient concentrations, except for the most oligotrophic waters where little primary 191 

production occurs. A variable C:N scheme would thus have little effect on our simulations. 192 

Intracellular resource allocation models coupled to GCMs show conflicting results on the 193 

stability of C:N, however, their C:P still varies substantially (Inomura et al., 2022; Pahlow et al., 194 

2020). For this reason, and to keep the model computationally efficient, we assume constant C:N 195 

throughout every simulation. 196 

Our variable N:P model is only applied to MOBI’s PO. While we recognize the diversity 197 

in particle types (e.g., living and nonliving) in the data collected by Martiny et al. (2013) and 198 

used to develop the GM15 P:C equation, we also recognize it as a broad, first-order estimation. 199 

We then apply it only to the PO, which is intended to be a representation of unspecialized surface 200 

autotrophic plankton, for the following reasons. The P:C observations are biased towards 201 

oligotrophic (low PO4) waters except for the Bering Sea (Martiny et al., 2013). Consequently, the 202 

observations preferentially occurred in low silicate environments, implying that siliceous 203 

phytoplankton may not be a significant constituent in the collected material (Gregg & Casey, 204 

2007). Thus, the variable N:P model is not extended to our PDiat. Eutrophic (high PO4) P:C 205 

observations are generally at higher latitudes and may then carry a seasonal bias. MOBI also uses 206 

the N:P of the well-studied Trichodesmium for the simulated PDiaz N:P (P:C of 3.57‰) (Sañudo-207 

Wilhelmy et al., 2004; White et al., 2006). This species inhabits oligotrophic waters and thus 208 
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could constitute some of GM15’s P:C data. However, there is substantial variability in the 209 

observed P:C values at low PO4 concentrations, and only a minority of these data points are 210 

similar to the PDiaz 3.57‰ value. Further, the binned log-transformed means of the data are also 211 

substantially higher than this value. Thus, it is unlikely that PDiaz make up any significant portion 212 

of the data analyzed by Martiny et al. (2013).  213 

Oceanic heterotroph stoichiometry has been found to be generally more constant and so 214 

we do not apply any variability to our PZ simulations (Galbraith & Martiny, 2015; Ho et al., 215 

2020). Because the PZ N:P remains fixed, grazing on PO or detritus is turned off when they have 216 

a higher N:P (i.e., a low P content) at low PO4 concentrations (equation S14). Conversely, in 217 

eutrophic waters when PO or detritus N:P is lower, PZ only uptake enough P biomass to remain at 218 

the constant ratio (N:P = 16:1) with the uptake of the N biomass. The excess P biomass, from 219 

this process, is directly routed to the detritus P inventory through “sloppy feeding”, a similar 220 

convention as used for PDiaz (Somes & Oschlies, 2015). 221 

Two new prognostic equations were implemented in MOBI to explicitly calculate the 222 

phosphorus content of both the PO and the resulting detritus (Figure 1, equations S10 and S12). 223 

The latter allows the scheme to affect the biological carbon pump. The variable N:P alters 224 

nutrient uptake ratios by proportionally utilizing PO4 or DOP with respect to the NO3 according 225 

to equation 1 (equations S7 and S8). Two new diagnostic equations were then added to calculate 226 

the N:P of PO (N:PPO) and detritus (N:PDetr) at every timestep (equation S13), which are 227 

subsequently used to calculate the P loss from them (e.g., predation, mortality, remineralization, 228 

etc.) (J. Moore et al., 2004). 229 
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lower asymptotes, respectively. Other parameters were determined to achieve the most 247 

statistically accurate model possible. The resulting variable Si:N model (Figure 2) is: 248 

𝑆𝑖: 𝑁 ቀቁ =  −0.46 ×  𝑡𝑎𝑛ℎ (6.9 𝑛𝑀ିଵ  ×  ሾ𝐹𝑒 (𝑛𝑀)ሿ −  3.7)  + 1.6                    (2) 249 

Equation 2 exhibits similar Si:N values at high Fe as other variable models, except for 250 

Holzer et al.’s HYPR experiment (2019; Matsumoto et al., 2013; Matsumoto et al., 2020). While 251 

we did not test these exponential models, our Si:N model does allow silica leakage, 252 

complimenting their EXP1 and EXP2 findings. Conversely, because we address the large data 253 

scatter at low Fe through averaging and outlier rejection, our Si:N model predicts a significantly 254 

lower maximum Si:N value than those studies. The variable Si:N scheme serves to regulate the 255 

PDiat consumption of Si in addition to the model’s preexisting nutrient limitation framework. 256 

Biogenic Si is implicitly calculated from the N biomass of PDiat and is only used subsequently in 257 

the calculations of opal production and dissolution. 258 

2.2. General Experiment Design 259 

The effects of the VSMs on ocean biogeochemistry were isolated through four different 260 

model versions. In Control, all stoichiometric ratios are held constant for all PFTs. Note, the N:P 261 

of PDiaz differs from that of other plankton but remains constant. Model VarP:N applies equation 262 

1 to the PO and allows this variability to affect the N:P of detritus. The detritus N:P is different 263 

from that of the PO because detritus receives input from all PFTs. Model VarSi:N retains VarP:N 264 

and applies equation 2 to the PDiat. The fourth model, Tuned, is identical to VarSi:N, except that 265 

DOP and DON, referred to collectively as DOM, remineralization rates were accelerated five-266 

fold. This model is an initial attempt at tuning and results in more realistic DOM distributions. 267 

Extensive model tuning has not been attempted here and is beyond the scope of this study.  268 

PI and LGM simulations are performed with each model version. The PI simulations 269 

were ran for 4,000 model years to reach a climatic and biogeochemical steady state solution. 270 

Throughout this spin-up, pCO2 was fixed at a preindustrial value of 277 ppm (Bauska et al., 271 

2015). Subsequently, each simulation was ran for an additional 1,000 years with prognostic 272 

variable pCO2 enabled, though these remained close to PI values. LGM boundary conditions 273 

were then identically applied and each model ran for an additional 5,000 years with prognostic 274 
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pCO2 (Matsumoto et al., 2020), thus allowing the quantification of variable stoichiometry effects 275 

on pCO2 and climate. Analyses were performed on the PI and LGM variable pCO2 simulations.   276 

2.2.1. Last Glacial Maximum Simulation 277 

 LGM boundary conditions are the same as those set forth, and described in detail, by 278 

Muglia et al. (2018) except for enabling prognostic pCO2, which can moderate the simulated 279 

climate, and neglecting the reduced sedimentary Fe flux along continental boundaries that was 280 

driven by the lower LGM sea levels (Muglia et al., 2017). Tangential simulations exploring the 281 

effect of these reduced sedimentary Fe fluxes, in relation to variable stoichiometry, are discussed 282 

in section S4. Briefly, the LGM boundary conditions applied identically to all model 283 

configurations are: elevated Fe fertilization from increased dust fluxes (south of 35°S these are 284 

increased ten-fold), one salinity unit is added to every ocean grid box to account for lower LGM 285 

sea levels but the ocean volume remains unchanged, wind stress fields from the PMIP multi-286 

model mean anomaly, decreased southern hemisphere moisture diffusion to increase Antarctic 287 

Bottom Water production and meridional extent (Muglia et al., 2018; Muglia & Schmittner, 288 

2015), orbital parameters for 21kya (Kageyama et al., 2017), prescribed ICE-6G ice sheets 289 

(Peltier et al., 2015), and reduced radiative forcing at the top-of-atmosphere energy budget due to 290 

lower atmospheric methane concentrations (Ramaswamy et al., 2001). 291 

2.3. Caveats 292 

 There are several important caveats with the model results and the subsequent 293 

experiments presented here. Firstly, the terrestrial carbon cycle does not include interactive 294 

permafrost, peat, and lithologic weathering. Additionally, a portion (402 Pg) of the land C 295 

inventory is instantaneously removed from the earth system with the implementation of the LGM 296 

ice sheet mask (Cox, 2001; Meissner et al., 2003). This C is assumed to be buried under the ice 297 

and the magnitude is consistent with prior research (Jeltsch-Thommes et al., 2019; Zeng, 2003). 298 

The Atlantic Meridional Overturning Circulation (AMOC) strength in the LGM remains 299 

uncertain (Muglia et al., 2018). While model results closely match some proxy reconstructions, 300 

we cannot assume that the AMOC configuration is correct. We also note that the variable 301 

stoichiometry effects on accurately simulating different climate states does depend, sometimes 302 

strongly, on how other biologically relevant processes are simulated (section S4). 303 
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Several additional simplifications exist in MOBI that may affect our results. PDiaz do not 304 

contribute their higher C:N:P to the exported POM and are instead remineralized (J. Moore et al., 305 

2004; Somes & Oschlies, 2015). While our PDiaz have a significantly different C:N:P of 306 

280:40:1, their biomass, relative to other PFTs, is not large. Allowing the excess PDiaz N (and 307 

thereby C) to be captured in the detritus inventory increased the global weighted average N:P by 308 

1.2:1 and the export ~ 0.5 Pg C year-1 more. The rerouting of this N to the detritus degraded the 309 

accuracy of simulated surface PO4 and NO3 when compared to observations and so was 310 

neglected. Additionally, the ocean model lacks interactive ocean sediments; organic matter is 311 

instantly remineralized at the benthic interface and returned to the water column.  312 

There is a significant amount of uncertainty in our DOC quantifications due to the 313 

extreme complexity and variability that exists in its sources and heterotrophic processing 314 

(Lønborg et al., 2020; Wagner et al., 2020). In MOBI, DOM is simply a parameterized fraction 315 

of POM and its recycling varies by temperature. This may explain why the PI DOC is too low 316 

compared to prior estimates in Control, VarP:N, and VarSi:N (Williams & Druffel, 1987). 317 

Alternatively, Somes and Oschlies (2015) suggest the underestimation may be driven by DOM 318 

stoichiometry variations. Thus, to achieve the observed quantities, a C:N of 11 is needed to 319 

accurately convert DON to DOC. While Tuned better matches DON and DOP observations, its 320 

DOC is significantly lower than the other simulations and would then require a C:N of 74. 321 

Revising the model’s DOM cycling is beyond this study’s scope; we continue to use a C:N of 7 322 

for DOC computations. 323 

3. Model Validation 324 

3.1 Surface Nutrients 325 

On a global average, VarP:N leads to a deterioration of simulated PO4 and NO3 326 

distributions, however, most of the error is confined to the Arctic and Southern Oceans (SO). 327 

Tuning reverts most of those changes and demonstrates that a model with variable stoichiometry 328 

can perform as well as a model with fixed stoichiometry. Introducing VarSi:N, conversely, 329 

improves simulated Si distributions substantially. Thus, the Tuned simulation performs the best, 330 

comprehensively. The Taylor diagram (Figure 3) provides a statistical synopsis by plotting the 331 

normalized standard deviation (σ) (normalized by the σ of the observations) of a given nutrient 332 



333 

334 

335 

336 

337 

338 

339 

340 

341 

342 

343 

on the ra

square er

simulatio

black dot

distributi

Figure 3
is indicat

a model d

deviation

correlatio

dial axis aga

rror (RMSE)

on would the

ts on the plo

ions relative 

. Taylor plot

ted by both b

data point’s 

n matching th

on azimuthal

manuscript su

ainst a simul

) on the azim

en have a σ a

t. Table S1 d

to observed

t of surface 

black circles

performance

hat of the ob

l axis, while

ubmitted to Pal

lation’s corre

muthal axis (M

and R equal 

details the st

d data from th

simulated nu

s, thus the pr

e. The dashe

bserved. Sym

e those witho

leoceanography

 

elation (R) a

Muglia et al

to one, a RM

tatistical met

he World Oc

utrient statist

roximity to th

ed red arc ind

mbols with a 

out outlines a

hy and Paleocli

and the uncer

l., 2018; Tay

MSE of zero,

trics of the s

cean Atlas, 2

tical perform

he respectiv

dicates a mo

a black outlin

are plotted a

imatology 

rtainty-corre

ylor, 2001). A

, and be coll

simulated nu

2013 (H. Ga

mance. Perfe

e circle can 

odel’s nutrien

ne are plotted

against the R

ected root m

A perfect 

located with 

utrient 

arcia et al., 2

ect performa

be used to a

nt standard 

d against the

RMSE axis. T

mean 

the 

013). 

 

nce 

assess 

e 

The 



manuscript submitted to Paleoceanography and Paleoclimatology 

 

statistical performance of surface Si simulations in VarSi:N and the Tuned models are extremely 344 

similar and visual distinction here is difficult. 345 

Contrary to the global perspective, the VSMs had both improving and degrading effects 346 

on simulating nutrient spatial distributions, Figure 4 (H. Garcia et al., 2013; Letscher et al., 2013; 347 

Mather et al., 2008). Surface NO3 concentrations improved from the Control simulation due to 348 

VarP:N almost everywhere except at high latitudes. Primary production increases cause more 349 

particulate organic N (PON) export to the deep ocean, resulting in waters upwelling with higher 350 

NO3 (Figure S7). Thus, Southern Ocean NO3, between 30°S and 60°S, now better matches the 351 

observations but is still too high closer to the Antarctic margin. Increased simulated NO3 in the 352 

Pacific equatorial and Benguela upwelling currents also improve representations (Figure S1). 353 

However, these areas, in addition to the Northwest Pacific, Bering Sea, and the northern Indian 354 

Ocean, are still underestimated by VarP:N as compared to observations. In the Northeast 355 

Atlantic and the Arctic, NO3 is overestimated by the model. Model resolution and isolation of the 356 

Arctic Ocean from the Pacific leads to unrealistically high nutrient concentrations there. 357 

However, model-observation differences in ice-covered polar oceans may also be due to seasonal 358 

biases in the observations, which lack winter data. The North Atlantic NO3 overestimation, an 359 

increase from the Control experiment, is caused by VarP:N reducing the PO4 limitation there and 360 

allowing more N-fixation, discussed later. 361 
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 In contrast to NO3, PO4 concentrations were slightly reduced across all latitudes (Figure 377 

4B) in response to VarP:N, amplifying the biases from the Control (Figure S2). Although PO are 378 

now more P frugal in oligotrophic environments, their increased P use in eutrophic regions and 379 

the improved cohabitation with PDiaz overcame this effect, leading to reduced ambient 380 

concentrations. Model tuning returns simulation accuracy to approximately that of the Control. 381 

Regardless, when considering the global C-fixation perspective, the simulated PO4 382 

underestimation is a lesser concern since PO4 is only a limiting nutrient after Fe and NO3 383 

(discussed later), indicating that our primary producers and associated carbon pump are 384 

predominantly controlled by other nutrient availabilities. 385 

3.2 Deviations from Fixed Stoichiometry (N*) 386 

Deviations from constant stoichiometry may be captured through N* = NO3 – 16 × PO4 + 387 

2.9 (mmol m-3), but N* is controlled by many processes in addition to stoichiometry (Gruber & 388 

Sarmiento, 1997; Monteiro & Follows, 2012; Sarmiento & Gruber, 2006; Weber & Deutsch, 389 

2010). Figure 4C shows N* only in the surface ocean to avoid denitrification influences but 390 

upwelling sites may still imprint interior denitrification errors on N*. Surface N* is susceptible 391 

to N-fixation which is confined between 40°S and 40°N. All model versions have preferential 392 

DOP remineralization but it lacks the spatial variability seen in  observations (Clark et al., 1998; 393 

Monteiro & Follows, 2012). The cause, whether it be PO4 or NO3 inaccuracies (section S1.3), of 394 

model departures from observed N* alternate by latitude and regionally. In all model versions, 395 

there is a relative excess of NO3 at the high latitudes (>60°), in the northwest North Pacific and 396 

the North Atlantic, along with relatively too little PO4 in the midlatitudes and tropics (Figures S5 397 

– S6). 398 

 The Control simulation reproduces the meridional distribution of N* most accurately 399 

overall. N* errors in the VSMs mostly stem from inaccuracies in N cycling outside of the 400 

euphotic zone, as indicated by relatively high NO3 at upwelling sites (Figure S5). The excess N 401 

stimulates PDiat growth, increasing the P consumption across the SO nutrient gradient (~ 65 – 402 

35°S), and yields excess N* there (Figure 4C and S11). Under VarP:N, PO are only a majority of 403 

the population at PO4 concentrations lower than ~0.1 mmol m-3 and are less than 20% of the 404 

population at concentrations greater than ~0.55 mmol m-3 (Figure 5). Thus, the areas where PO 405 

are most prevalent, generally between 10 and 40°N and °S (Figure 4C and Figure S13), 406 
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the relative abundance of the PFT and they are overlaid to sum to one. See Figure S12 for the 422 

Control. 423 

VarSi:N improved the simulated surface Si distributions by moving the Si gradient in the 424 

SO further south. However, north of 40°S, surface Si concentrations were slightly decreased 425 

compared to the Control, enhancing the model’s widespread underestimation. The largely Fe-426 

limited PI ocean drives higher Si uptake in VarSi:N. Notably, areas of VarSi:N’s Si 427 

underestimation are generally not inhabited with PDiat, and no other simulated PFTs use Si 428 

(Gregg & Casey, 2007). The areas of important underestimation are the northwest North Pacific 429 

and the Bering Sea, in which PDiat do reside (Figure S3). The persistent nutrient error in this 430 

region is attributed to a well-known modeled circulation discrepancy (Kvale et al., 2021; Somes 431 

et al., 2017; Weaver et al., 2001). 432 

3.3 Implications of Model Tuning 433 

Preliminary model tuning was performed after VarP:N and VarSi:N with the intent of 434 

improving the accuracy of PI nutrient distributions. Since DOM was overestimated in all 435 

experiments, remineralization rates were increased 5-fold (Figure S4). While we note that 436 

observations of DOM are spatially limited and carry uncertainty, the increased remineralization 437 

rates did reduce the overestimation of the Control run to more reasonable values (Figure S4) 438 

(Letscher et al., 2013; Mather et al., 2008). After tuning, simulated DOP is slightly 439 

underestimated (~0.1 mmol m-3) in the mid-latitude North and South Atlantic, to which the 440 

available observations are restricted. DON observations include more data transects in the Indian 441 

and Pacific Oceans. DON generally overestimates (~5 mmol m-3) observations slightly in all 442 

three ocean basins, except for the SO, where observations are slightly underestimated (~1 mmol 443 

m-3). These DON errors should then be considered in our DOC quantifications. These are 444 

improvements, nonetheless, to the overestimated DOM values of the Control.  445 

Additionally, the preliminary tuning drove slight improvements in inorganic nutrient 446 

simulations, making the Tuned simulation the most accurate comprehensively (Figures S1 – S3). 447 

While tuning does cause a remarkable improvement in simulated O2 concentrations due to less 448 

interior microbial respiration (Figure S7), the simulated interior ocean NO3 is still too high, 449 

although it is reduced relative to VarP:N and VarSi:N. The upwelling of NO3 in the SO then 450 
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remains elevated above observations (Figure 4B). Tuning restored the PO4 simulation accuracy 451 

to approximately that of the Control while retaining the VarP:N and VarSi:N schemes. There are 452 

a few areas of slight PO4 improvement over the Control in the mid-latitudes and the tropics 453 

(Figure S2). However, the Tuned model did not improve the strength or location of the SO PO4 454 

gradient. It underestimates the concentrations and places the gradient too far south. The Control 455 

simulation remains the most accurate in this area. 456 

4. Results 457 

4.1. Changes in Ocean C Storage 458 

Because of more C-laden organic matter and larger total primary producer biomass, the C 459 

export out of the euphotic zone into the deep ocean is increased by the VSMs (Table 1, S2, and 460 

S3). While each experiment has slightly different global C budgets, a symptom of the PI model 461 

spin-up, C inventory differences between them are almost entirely realized within the ocean 462 

(Table 2). Thus, our simulated oceans have larger C inventories in PI VarP:N and VarSi:N, than 463 

the Control. The Tuned model has a slightly smaller inventory caused by the rapid processing of 464 

DOC into DIC which then limits ocean C uptake from the PI atmosphere during the spin-up 465 

(Figure 6). 466 

Table 1. Global Quantifications. 467 

PI PO 
C:N:P 

Export production 
C:N:P 

Carbon export 
(Pg/yr)

PO4 export 
(Pg/yr) 

Control 112 : 16 : 1 112 : 16 : 1 8.8 0.62 
VarP:N 141 : 20 : 1 130 : 19 : 1 9.4 0.60 
VarSi:N 138 : 19 : 1 133 : 19 : 1 9.4 0.60 
Tuned 134 : 19 : 1 128 : 18 : 1 9.6 0.64 
LGM     
Control 112 : 16 : 1 112 : 16 : 1 7.1 0.50 
VarP:N 155 : 22 : 1 141 : 21 : 1 7.7 0.45 
VarSi:N 151 : 22 : 1 148 : 21 : 1 8.0 0.44 
Tuned 149 : 21 : 1 146 : 21 : 1 8.3 0.46 

Note. PO and EP C:N:P is the globally weighted average. EP C:N:P, C, and P export are 468 

calculated from detritus at the base of the euphotic zone (120 m). 469 
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Note. The PI is the top section and the LGM is the middle section. The top of the bottom 475 

section (a) shows how a variable changes between climate states, while below that (b) shows the 476 

relative difference of those changes. E.g., VarP:N – Control = (VarP:N, LGM – PI) – (Control, 477 

LGM – PI). Notable here is that the VSMs manifested their increased LGM C storage through 478 

relatively larger increases in their DIC and DOC inventories. See Table S3. 479 

The LGM ocean is more oligotrophic than the preindustrial. This is largely due to slower 480 

respiration, driven by cooler temperatures, and a weaker thermohaline circulation, which reduces 481 

the nutrient replenishment from upwelling waters (Buchanan et al., 2016; Galbraith & Skinner, 482 

2020; Matsumoto, 2007; Toggweiler, 1999; Yvon-Durocher et al., 2010). Conversely, higher 483 

LGM atmospheric dust fluxes yielded more Fe fertilization to primary producers and furthered 484 

nutrient consumption (Muglia et al., 2018). Our LGM configuration captures these 485 

characteristics which affect stoichiometry, net primary production (NPP), and carbon cycling 486 

(Muglia et al., 2018; Somes & Oschlies, 2015). Thus, our VSMs respond interactively to the 487 

LGM conditions, producing substantial differences in the C inventories, compared to Control, 488 

between the LGM and PI (Table 2). The global C budget for each experiment is approximately 489 

conserved between the PI and LGM climate states. 490 

The modeled total ocean carbon (TOC) inventory is the summation of DIC, POC, and 491 

DOC. Carbon storage increases in the LGM ocean, relative to the PI, are largely realized in the 492 

DIC inventories. In the Control, the global ocean DIC inventory increases by 257 Pg C (Figure 493 

6, Table 2, and S3), with all other experiments seeing larger (307-295 Pg C) increases. POC 494 

decreased in the LGM ocean by 13% in the Control and 7% in the VSMs. The smaller POC 495 

reductions in the VSMs lead to LGM VarP:N boasting 26% more POC over the Control. The 496 

depression of PDiat in VarSi:N weakens this difference to 24% with similar values for the Tuned 497 

model. Finally, DOC reduced by 13% in the Control, but the VSMs are approximately 498 

unchanged. The LGM DOC is larger in VarP:N (and VarSi:N) by 60% (54%) than the Control. 499 

The Tuned model DOC inventory is much smaller than the other models due to the accelerated 500 

DOM remineralization, but this is compensated for by having the largest DIC increase from the 501 

PI of any experiment. 502 
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The DOC invariance in the VSMs is driven by their larger LGM biomasses which 503 

increase DOC sourcing via mortality (Table S2). By linearizing the DOC source and sink terms, 504 

it is shown that the LGM-PI mortality changes (in particular, the PO mortalities) are positive in 505 

these experiments, whereas they are negative in the Control (Table S4). This contradicts the 506 

temperature influence, wherein, the VSMs have greater LGM-PI temperature reductions and are 507 

colder than the Control which slows plankton mortality and DOC recycling (sink term) rates. 508 

However, the difference in VSM biomass-induced mortality changes compared to the Control’s 509 

changes is larger than the comparative difference in the temperature influences on mortality 510 

(Table S4). Further, while the VSMs’ recycling rates do decrease and decrease more than the 511 

Control, their larger DOC inventories, driven by larger biomasses, overwhelm the temperature-512 

reducing effect. Lastly, the VSMs’ DOC:DIC show that DOC increases relatively more than 513 

DIC, wherein the Control DOC:DIC is 7.4‰ (Table 2). While the ratio decreases for all models 514 

in the LGM, from the PI, the VSMs reduce much less than the Control, denoting the remarkable 515 

importance of DOC change between climate states.   516 

Ultimately, the VSMs increase the ocean C storage from the LGM – PI Control model 517 

with 38 - 50 Pg more DIC and 34 - 40 Pg more DOC (Table 2). Thus, we identify the DOC 518 

response as an important, but thus far overlooked in variable stoichiometry modeling studies, 519 

biological C storage mechanism. Figure S17 exemplifies these C changes with zonal averaged 520 

cross-sections, wherein VarP:N DOC increases from the Control in the surface layers. Surplus 521 

DOC is subsequently transported into the interior at downwelling sites but remains in the upper 522 

cell of the overturning circulation while eventually degrading into DIC. Conversely, DIC is 523 

relatively increased by VarP:N in the deep layers due to increased POC export. SO upwelling 524 

draws the increased DIC to the surface where enhanced outgassing can occur, but this is 525 

outweighed by the DIC reduction across all other latitudes leading to a net pCO2 intake. Some 526 

relatively reduced DIC is physically transported into the interior with deep water formation, but 527 

additions from POC remineralization throughout the water column soon reverse the deficit into a 528 

surplus of DIC. 529 

The additional surface ocean C fixation and subsequent sequestration aided in further 530 

ocean C uptake from the atmospheric and land inventories. VarP:N reduced the LGM pCO2 from 531 

204.7 ppm in the Control to 193.3 ppm. The reduction was continued by VarSi:N and Tuned to 532 
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192.1 and 190.5 ppm, respectively. From this and the discussed C inventory changes, the 533 

variable Si:N scheme and model tuning have notably smaller C cycle impacts than VarP:N.  534 

Each simulation did not have the same pCO2 at the end of the respective PI simulation but the 535 

Tuned model has the largest pCO2 decrease of 82.8 ppm (see Figure 6 and Table 2). VarP:N and 536 

VarSi:N have 81.6 and 82.6 respectively, while the Control has only a 69 ppm reduction. The 537 

LGM pCO2 in the VSMs are notably more consistent with ice core data than in the Control 538 

(Bereiter et al., 2015; Ivanovic et al., 2016).  539 

Beyond surface C sequestration, the VSMs reduce surface alkalinity slightly through 540 

increases in CaCO3 production, via PO, and N-fixation. Changes in the ocean’s pH buffer 541 

capacity, as indicated by DIC:alkalinity, may then be partially responsible for the increased 542 

drawdown (Egleston et al., 2010). The ratio changes little in the PI between each experiment, but 543 

does more so, albeit still meagerly, in the LGM experiments (Table S3). While DIC and 544 

alkalinity both slightly reduce in the surface ocean (not shown), surface DIC change is the 545 

dominant effect and increases ocean CO2 ingassing. We do not focus our analysis on this small 546 

effect any further though. 547 

The VSMs also restrict the land carbon inventories further than the Control. The lower 548 

pCO2 increased the C limitation for terrestrial primary producers and lowered global 549 

temperatures (Ciais et al., 2012; Gerhart & Ward, 2010; Harrison & Prentice, 2003; Ödalen et 550 

al., 2020; Prentice et al., 2011). The LGM Control sees a 73 Pg reduction in the terrestrial carbon 551 

inventory, ignoring the ice sheet burial (Table 2 and S3). The VSMs substantially restrict it by a 552 

further 67% (i.e., 49 Pg) for the VarP:N, 74% for VarSi:N, and 78% for the Tuned model. These 553 

reductions are still smaller than prior estimates and could be caused by UVic’s incomplete 554 

terrestrial C cycle (Ciais et al., 2012). The TOC inventory increases are then summations of 555 

carbon losses in the atmospheric and terrestrial inventories (Figure 6 and Table S3). Although 556 

the model’s global carbon inventory is not strictly conserved, there is only 1 - 4 Pg of 557 

unaccounted for C gain during the LGM simulations, which is four orders of magnitude smaller 558 

than the global C inventory. 559 
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4.2. Export Production 560 

The variable N:P scheme creates regions of relatively enhanced or degraded carbon 561 

fixation by primary producers, which then redefines the spatial distribution of carbon export to 562 

the deep ocean. The obvious caveat to this is that the highest primary producer biomasses are 563 

generally in the eutrophic regions where the C and N content of PO is not as large relative to P. In 564 

oligotrophic areas, which cover a larger ocean fraction, biomasses are low, although PO carry 565 

more C and N relative to P (Figures S1 and S2). The total effect on global export production 566 

(EP) is then determined by the competing effects of these regions (Figure S14). Note that the PO 567 

ratio is different from the C:N:P of EP, which also depends on the stoichiometry of other PFTs 568 

(Figures 7 and 8). The efficiency of the global biological C pump, represented by the weighted 569 

C:P of EP (equation 3), increases due to PI VarP:N by ~18 C units, with small additions from 570 

VarSi:N, and slight weakening from Tuned model due to the eutrophication caused by increased 571 

DOM remineralization (Figure 7). 572 

𝐶: 𝑃| ா|షభమబ =  ቂ ଵ(ா|షభమబ) ௗ × :൫𝑁 𝑃ா|షభమబ  × 𝐸𝑃|ିଵଶ൯ 𝑑𝐴 ቃ × 𝐶: 𝑁                   (3) 573 

The increase in the C pump’s efficiency drives more net C export in the VSMs than in the fixed 574 

model (Table 1). Even though the Tuned C:P indicates a lower efficiency compared to VarP:N 575 

and VarSi:N, the higher nutrient availability supports a larger primary producer biomass (Table 576 

S2) and thus a larger C export. 577 
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4.3. Primary Producers 621 

Two effects of the VSMs on phytoplankton communities can be distinguished as 622 

physiological and taxonomical changes (Matsumoto et al., 2020). Physiological effects arise 623 

directly from alterations in the elemental composition of the phytoplankton. However, this also 624 

changes the nutrient consumption ratios, which, in the presence of particular nutrient limitations, 625 

can alter the competition between the different PFTs. This leads to two PFT, here Po and PDiaz, 626 

cohabitating more harmoniously. Such shifts in the phytoplankton communities are referred to as 627 

taxonomic effects. Each of these effects tends to increase the biological C storage. Below, the 628 

VSMs’ effects are compared to the Control, whether PI or LGM, unless explicitly stated 629 

otherwise. 630 

4.3.1. Variable P:N Physiological Changes 631 

Due to the plasticity of the P cellular quota in VarP:N, PO inhabiting PO4 depleted 632 

regions are more enriched with N, and thus C, compared to P (Figure 2). Conversely, in PO4 633 

replete regions, they are less enriched. The global weighted average C:P of PO, following 634 

equation 3, in PI VarP:N increased to 141:1 from the Control’s 112:1 (Table 1, Figures 7 - 8). 635 

This slightly underestimates the global observed mean of 146:1, but it may be due to the model 636 

capturing high-latitude eutrophic regions where observations are absent (Martiny et al., 2013). 637 

The new C:Ps indicate the larger influence of oligotrophic regions in the global average, which 638 

supports a net 7% C export increase. P export, conversely, decreases slightly by 3%. The more 639 

oligotrophic LGM exacerbates the N enrichment increasing PO ratios to 155:1. The depression of 640 

PDiat prevalence caused by VarSi:N makes more P available and reduces the ratios by 8 and 4 641 

units in the PI and LGM, respectively, but the net C export remained unchanged as PO grew in 642 

their place. Model tuning had a similar effect in the PI and LGM climates where increased 643 

retention of N and P in the surface ocean drove slightly reduced C:Ps of 134:1 and 149:1, 644 

respectively (Table 1). However, the tuning also supported more total NPP and so the PI and 645 

LGM C export increased by an additional 2% and 9 %, respectively, from VarP:N (Table 3).  646 
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also indicate Fe replete waters nearby the Fe source regions. The dustier LGM climate state is 652 

also reflected, bottom right, with more Fe intrusion into the interior basins and the enhanced Fe 653 

fertilization occurring in the SO south of 35°S. 654 

PO N:P in VarP:N displays more positive values in the oligotrophic regions and more 655 

negative values in eutrophic regions (Figure 10). Via the fixed C:N = 7 relation, the higher N:P 656 

regions indicate areas of more efficient carbon fixation, which is communicated to the deep 657 

ocean through EP. Zonally averaging these ratios provides a simpler comparison of each 658 

experiment. The weighted average N:P of PO, following equation 3, in the PI surface oligotrophic 659 

subtropical gyres display a value of ~ 23-21:1 (C:P = ~ 161-147:1 ). In the SO eutrophic waters, 660 

N:P values fall far below the fixed N:P, as low as 7:1 adjacent to Antarctica (Figure 9). 661 

Most of the PI zonal pattern is carried into the LGM, although south of 20°N the 662 

magnitudes increase by 1-6 units in the LGM. The bimodal-like shape is also depressed in LGM 663 

VarP:N as compared to the PI (Figure 9). The eutrophic upwelling region in the Eastern tropical 664 

Pacific is the main cause of the bimodal feature in the PI, driving N:P ratios down. With weaker 665 

ocean overturning in the LGM, less PO4 is upwelled in the eastern tropical Pacific resulting in 666 

higher N:P than the PI. In a small region near the most intense LGM upwelling, VarP:N ratios 667 

still fall below the fixed N:P (Figure 10) but this feature is counterbalanced by higher N:P in the 668 

western Pacific and the eastern Atlantic boundary at approximately the same latitudes. The 669 

weaker upwelling has the effect of expanding the oligotrophy in the LGM Pacific, thereby 670 

expanding the efficiency of the C pump there (i.e., higher C:P), particularly with the subtropical 671 

gyres (Figures 9, S15, and S16). The bimodal-like N:P pattern is slightly returned in the VarSi:N 672 

and Tuned experiments. In these runs, slightly more nutritious waters are upwelled in the eastern 673 

Pacific driving lower N:P in this latitudinal band (Figure 9). 674 

4.3.2. Variable P:N Taxonomic Shifts 675 

Because Po are almost never P limited, their new P frugality does little to increase their 676 

NPP. Their growth is predominantly limited by NO3 and Fe (Figure 11). PDiaz, however, are 677 

generally P limited after Fe and never NO3 limited. In VarP:N, the excess P left behind by PO 678 

fertilizes PDiaz, whose NPP increases by 61% in the PI and 115% in the LGM, consistent with 679 

prior research (Table 3) (C. Moore et al., 2013). Notably, the models overestimates prior global 680 
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Figure 12. Biomass and growth changes in the surface ocean (0 – 120 m). The left column is PI 708 

simulations, and the right is LGM. Top row: The change in PO biomass between VarP:N and the 709 

Control in the surface ocean. Contours of PDiaz biomass changes are overlaid on the same scale, 710 

where solid lines indicate positive values. Bottom row: Change in PDiaz NPP between VarP:N 711 

and the Control. Contoured lines are PDiaz PO4 limitation (from 0, meaning complete nutrient 712 

limitation, to 1, meaning no nutrient limitation) from the Control. Thus, increases in PDiaz NPP 713 

occurring in areas that were previously PO4 limited indicate where the VarP:N model relieved 714 

the PO4 limitation. 715 

Of course, PO and PDiaz cohabitate in other regions but the nutrient collaboration may not 716 

occur because either the PDiaz are not sufficiently P limited or there is too strong of a Fe 717 

limitation for either PFT. E.g., several areas of changing PO P NPP do not coincide with changes 718 

in N NPP, namely the tropical eastern Pacific cold tongue and the Indian Ocean, (Figure S9). In 719 

these areas, the P NPP changes in response to equation 1, however, the N NPP remains nearly 720 

unchanged because PO and PDiaz are predominantly limited by Fe (Figures 10 and 11) (Wu et al., 721 

2000). PO consume Fe faster than the PDiaz, which grow slower, leaving them Fe limited and 722 

suppressing the usual cohabitation (Großkopf and LaRoche, 2012; Meyer et al., 2016; Tyrrell, 723 

1999; Ward et al., 2013). Similar behavior continues in the VarSi:N and Tuned experiments. 724 

The LGM VarP:N also incited regions of improved cohabitation, increasing NPP totals 725 

(Table 3). In the more oligotrophic LGM ocean, lower PO4 concentrations initially made PDiaz 726 

more P limited than in the PI Control but the frugal PO P consumption in VarP:N still 727 

substantially relieved the limitation (Figure 11). The response is also aided by the increased 728 

LGM Fe fertilization (Buchanan et al., 2019a). The spatial extent of the LGM cohabitation 729 

exceeds that seen in the PI ocean but is generally bound to regions where PDiaz are not Fe limited 730 

(Figures 11 and 12). Compared to the PI, LGM PO and PDiaz NPP increases extend far into the 731 

Pacific subtropical gyres and dominate most of the Atlantic (Figure 12). 732 

The VarP:N model, then, prevents the N NPP reductions seen in the Control simulation 733 

between the LGM and PI climate states. The higher LGM Fe dust fluxes relieve PDiaz Fe 734 

limitation (Figure 11), increasing N-fixation to nearly PI values (Table 4) (Buchanan et al., 735 

2019a). N NPP is then reduced (LGM to PI) by only 32-33% for the VSMs, compared to the 736 
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Control’s 38% reduction. The LGM-PI P NPP reduction was approximately equal across all 737 

experiments, indicating more C-laden organic material. 738 

Table 4. Global N and P inventories and fluxes. 739 

PI: Surface NO3 
(×104 Tg) 

Total NO3 
(×106 Tg) 

Surface PO4 
(×104 Tg) 

N-fixation 
(Tg yr-1) 

Water column 
denitrification 

(Tg yr-1) 

Benthic 
denitrification  

(Tg yr-1) 
Control 1.6 2.7 0.2 256.6 149.9 102.8 
VarP:N 2.0 3.1 0.2 414.7 279.3 129.4 
VarSi:N 2.2 3.2 0.2 412.7 275.2 130.7 
Tuned 2.1 2.8 0.2 320.7 195.9 121.5 
LGM:       
Control 0.9 2.6 0.1 145.9 92.6 66.5 
VarP:N 1.1 2.6 0.1 313.6 267.6 86.8 
VarSi:N 1.2 2.7 0.1 318.2 271.9 89.6 
Tuned 1.3 2.9 0.1 224.3 155.4 86.3 

The accelerated DON remineralization in the Tuned model, which causes higher net PO P 740 

consumption, tempers the improved PO-PDiaz cohabitation but it is mainly at the expense of PDiaz 741 

whose original growth is reduced by ~36 and 61% in the PI and LGM, respectively (Table 3). 742 

The surface Tuned DOP inventory is smaller with little change to the PO4 inventory, leading to a 743 

PDiaz NPP reduction from an increased P limitation and returning it to near Control values (Table 744 

4 and Figure S8). Conversely, PO N and P NPP increases between 33 and 36% in both Tuned 745 

climate states. 746 

4.3.3. Variable P:N N Cycle Changes 747 

The improved PO-PDiaz cohabitation strongly impacted the global N cycle. Increased PDiaz 748 

in VarP:N accelerates PI N-fixation by 62% which increased total N NPP and primary producer 749 

biomass by 13% and 16%, respectively (Table 4, S2, and S3). The resulting increase in export 750 

and remineralization of organic matter causes more deoxygenation and increased water column 751 

denitrification by 86%, mainly in the Pacific and Indian Oceans (Table 4 and Figure S22). 752 

Smaller increases (26%) occurred in benthic denitrification. While these lead to only a 15% 753 

increase in the global NO3 inventory, the NO3 of the euphotic zone increased by 25%, thus 754 

providing N limitation relief. PDiat’s Si limitation largely limits their response to the excess N and 755 

so mainly PO N NPP increases by 20% globally, with little change in their P NPP (Table 3). This 756 

cohabitation-induced N-fixation thus supports more PO with flexible stoichiometry and enhances 757 

C EP. 758 
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The increased PDiaz activity induced by VarP:N altered the LGM NO3 budget even more 759 

than the PI. Globally, N-fixation increased by ~115% compared to the Control (Table 4). The 760 

resulting NPP and EP increase caused further depletion of oxygen at depth where organic 761 

material is respired (Figure S7). The lower O2 levels are particularly important in the North 762 

Pacific, where they crossed the denitrification threshold. VarP:N, consequently, causes an 763 

increase in denitrification in the LGM (Figure S25) which counteracts the N-fixation increase 764 

(Somes et al., 2010). Water column denitrification increased by 189% from the LGM Control, 765 

much more than in the PI (Table 4 and Figure S22). Benthic denitrification showed a similar 766 

increase as the PI of 30%. Even with the widespread expansion of PDiaz and their N-fixation, the 767 

global LGM VarP:N N inventory slightly decreased by ~ 0.7% from the LGM Control. In the 768 

euphotic zone, however, the NO3 inventory increased by 27%, slightly higher than the PI 769 

changes. 770 

The Tuned model reduced N-fixation and denitrification from the VarP:N by the 771 

accelerated remineralization of DON, which fertilizes the PO further than PDiaz-sourced N alone. 772 

The increased PO growth in Tuned reduces PO4 availability for PDiaz, whose NPP and N-fixation 773 

drop by 22% in the PI. However, the Tuned simulation still has 25, 31, and 18% larger N 774 

fixation, water column, and benthic denitrification, respectively, compared to the Control 775 

simulation (Table 4). Thus, the global and surface ocean NO3 inventories are larger than the 776 

Control and similar to VarP:N. This pattern continues into the LGM but the above numbers are 777 

roughly doubled. The Tuned LGM NO3 budget is then slightly larger (12%) than in LGM 778 

VarP:N, while in the PI it was slightly smaller. The Tuned model slightly reduces the total 779 

primary producer biomass but it increases the prevalence of flexible stoichiometry PO, which 780 

ultimately yields more C EP. While NPP generally decreased during the LGM relative to the PI 781 

(Table 3), variable N:P allows phytoplankton communities to better adapt to the oligotrophic 782 

LGM conditions. 783 

4.3.4. Variable Si:N 784 

In VarSi:N, PDiat are enriched in Si relative to N in Fe-limited areas and depleted in Si in 785 

high-Fe areas, per equation 2. This relation is especially important in the largely Fe-limited PI 786 

ocean, Figure 10. VarSi:N increases PDiat Si limitation and decreases their global NPP and 787 

biomass by about 39% (Table 3, S2, and Figure 11 versus S8). In the LGM, VarSi:N causes a 788 
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36% reduction despite the increased LGM dust fertilization supplying additional Fe to the 789 

surface ocean and lessening the PDiat Si requirement (Conway et al., 2015; Lambert et al., 2015; 790 

Muglia et al., 2017, 2018). Note, even at the highest Fe concentrations, VarSi:N dictates a higher 791 

Si:N than the fixed Si:N scheme (Figures 2 and 12). 792 

With PDiat as a smaller component of the global plankton community, PO grow in their 793 

place. The PO thus see an increase of ~12% in relative abundance, and a 23% (26%) increase in 794 

N (P) NPP, whereas PDiaz changes are small (Table 3 and  Table S2). LGM VarSi:N leads to a 795 

similar 21% (25%) increase in PO N (P) NPP. The increased PO4 availability from the reduced 796 

PDiat presence decreases the PO C:P by 8 in the PI and 4 in the LGM, but this has a small effect 797 

on the C EP in either climate state (Table 1 and S2). The C:P of EP changes little in the PI, but in 798 

the LGM it increases by 7 due to VarSi:N. This occurs, counter to the C:P of PO, because less 799 

PDiat, which have C:P of 112:1, exist to be exported. Instead, more PO with flexible C:P are 800 

exported and their ratios are generally higher than 112:1. The primary advantage of the variable 801 

Si:N scheme is in constraining the Si and PDiat simulations, but does not have as large of a C 802 

cycle influence as VarP:N.  803 

Fe-replete waters are generally along the continental margins and PDiat Si:N values are 804 

low and approach the fixed Si:N prescribed in the Control and VarP:N simulations (Figure 10). 805 

However, most of the PI ocean is Fe limited, driving high Si:N values and causing enhanced Si 806 

consumption of the already limited Si (Figures 11 and S8). Thus, PDiat growth is inhibited, and 807 

only PO grow in their place since PDiaz is slower growing than PO (Table S2, Figures S11 and 808 

S13). The trade-off between PDiat and PO is clearly seen in zonal plots of each PFTs relative 809 

abundance in the plankton community. I.e., where PDiat prevalence decreases, Po increase. These 810 

are also areas of PO4 concentrations below 1 mmol m-3, indicating that VarSi:N has a larger 811 

influence on communities in oligotrophic regions (Figures 4 and 5). The more available nutrients 812 

induced by VarSi:N are not reflected in the nutrient plots due to immediate PO consumption but 813 

they cause a decrease in the PO C:N:P ratios between 20° and 40°S in the PI and LGM oceans. 814 

This is the northernmost extent of the surface Si gradient in the Control, which, after VarSi:N, is 815 

moved south.   816 
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With the exception of the higher southern latitudes, PDiat Si:N values are mostly 817 

unchanged between the PI and LGM. South of 35°S, enhanced dust Fe fluxes decrease Si:N 818 

values to a minimum, which should allow more PDiat NPP than is seen in the PI (Figure S11) 819 

(Conway et al., 2015; Muglia et al., 2018). However, the reduced surface Si in the LGM (Table 820 

S5), paired with more extensive sea ice, which encroaches into the primary PDiat habitat (Figure 821 

S13, PI versus LGM for the green PDiat curve), reduces SO PDiat and negates the effects of a 822 

reduced LGM Si requirement caused by higher Fe fluxes. Thus, in the PI PDiat NPP remains 823 

largely unaffected by VarSi:N in the SO but in the LGM it decreases. 824 

VarSi:N and Tuned support the Silicic Acid Leakage Hypothesis (SALH) where during 825 

the LGM excess Si escapes the SO via surface waters, subducts into mode waters, and resurfaces 826 

in the equatorial East Pacific (Brzezinski et al., 2002; Holzer et al., 2019; Matsumoto et al., 827 

2002, 2014). Figure S18 (A and B) accordingly, show VarSi:N's transport of this relatively 828 

increased Si, compared to VarP:N. The SALH postulates that, in response, more siliceous 829 

phytoplankton grow in the Pacific, displacing other PFT (Figure S18, D). Decreases in the 830 

CaCO3:POC export denote the taxonomic shift there from calcifiers (included in Po) to PDiat 831 

(Figure S18, C) (Holzer et al., 2019; Matsumoto et al., 2014). Globally, VarSi:N shows relatively 832 

lower PO biomass in the LGM and relatively more PDiat biomass. Thus, the leakage presumably 833 

enhances ocean C uptake and storage by limiting CaCO3 production which increases alkalinity. 834 

Our results support this but find that the SALH has a smaller global effect on the LGM ocean C 835 

storage than our variable N:P model. pCO2 further reduces by only 1 ppm relative to VarP:N's 836 

13 ppm reduction and TOC increases by 7 Pg compared to VarP:N's 78 Pg relative increase 837 

(Table 2). VarSi:N's global C export change, 0.3 Pg year-1, is larger though compared to 838 

VarP:N's zero change (Table 1). 839 

Matsumoto et al. (2014) presented three possible mechanisms to induce the Si leak. They 840 

are enhanced SO Fe fertilization decreasing Si:N, more expansive sea ice that limits PDiat growth, 841 

and weaker SO overturning that removes SO trapping. Our model includes the enhanced Fe flux 842 

and the increased sea ice in the LGM. The SO westerly wind stress is effectively unchanged 843 

from the PI, however, confirming their conclusion that it may not be a required trigger 844 

(Matsumoto et al., 2014). A detailed investigation of the SALH is beyond this research and we 845 

do not investigate the sensitivities or causes therein.      846 
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5. Discussion 847 

The ubiquitous fixed phytoplankton stoichiometry assumption has been shown to limit 848 

model performance, predominantly through the spatial smoothing of the biological C pump 849 

(Matsumoto et al., 2020; Ödalen et al., 2020). The results presented here, among other studies, 850 

suggest that the implementation of variable stoichiometry can not only affect the simulations of 851 

the biological pump but also the structure of phytoplankton communities through taxonomic 852 

shifts and changes in nutrient limitations. Thus, the inclusion of variable stoichiometry in global 853 

climate models can enhance ocean C storage through larger DIC and DOC inventories causing a 854 

further 13 – 14 ppm drawdown of pCO2 between the LGM and PI climate states. Per our results, 855 

we stress the importance of the DOC inventory response to variable stoichiometry, which has 856 

been overlooked previously. While the DOC inventory is much smaller than the DIC, it responds 857 

by a similar magnitude as DIC to the GM15 model. In the following section, we compare our 858 

results to prior research and find that they are consistent, suggesting that our quantifications of C 859 

inventories, fluxes, and changes are reasonable. 860 

From the PI climate state to the LGM, Matsumoto et al.’s (2020) pCO2 reduced by 34 861 

ppm under fixed C:N:P whereas our results show a 69 ppm reduction that is closely matched by 862 

Ödalen et al.’s (2020) 64 ppm reduction. These pCO2 reductions strongly depend on the 863 

configuration of forcing conditions implemented in a given model for LGM simulations (as 864 

suggested in section S4). However, the effects of variable stoichiometry on pCO2 are similar 865 

across these studies. Matsumoto et al.’s (2020) GM15 framework was responsible for an 866 

additional 11 ppm drawdown and their power law model a 20 ppm drawdown. Ödalen et al.’s 867 

GM15 scheme was responsible for a slightly higher reduction of 16 ppm while our schemes vary 868 

between 13 and 14 ppm.  869 

The differences in pCO2 response may partly stem from different biogeochemical 870 

simulation methods. For example, MOBI normally, though unrealistically, instantaneously 871 

disassociates the PDiat’s soft tissue from their silica frustules and routes it to the detritus 872 

inventory, which has a slower sinking velocity (~3 times) than the simulated biogenic silica 873 

(Zúñiga et al., 2021). The accelerated sinking of PDiat POM, via silica ballasting, could add ~3.7 874 

to 1.3 Pg C year-1 to the deep ocean inventory (section S3.1 and Table S5), and presumably cause 875 
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a further 3-6 ppm pCO2 reduction, putting our model roughly between the power law and GM15 876 

quantifications (Matsumoto et al., 2020; Ödalen et al., 2020, respectively). 877 

5.1. Carbon Export and Ocean Storage 878 

At the PI steady state, the VSMs have higher export C:N:P (Figure 7 and Table 1) than 879 

Ödalen et al.’s (2020) C:P of 121:1, who uses GM15 in the model cGENIE. Tanioka & 880 

Matsumoto (2017), using a stoichiometric power law for C:P in the MESMO2 model, found a 881 

notably lower PI ratio of 103:15:1. In subsequent studies, these authors substantially revised the 882 

power law scheme and also tested the GM15 relation in MESMO2 (Matsumoto et al., 2020; 883 

Tanioka & Matsumoto, 2020). The new power law produced 113:16:1 and the GM15 scheme 884 

107:16:1.  885 

While Matsumoto et al. (2020) suggest that low export C:N:P in their findings, is driven 886 

by the lack of preferential nutrient remineralization, the cGENIE model also carries this 887 

simplification but better matches our model, which does include it. Although, the cGENIE and 888 

MOBI similarity could be induced by cGENIE only having one PFT, and thus a more expansive 889 

application of GM15’s variable C:P, which may overcome the lack of preferential nutrient 890 

remineralization. Another possibility for the C:P difference between these studies is likely a 891 

symptom of GM15 implementation methods, in which Matsumoto et al. (2020) applied it to all 892 

PFTs, thus inciting nutrient frugality everywhere, creating an excess of PO4, and lowering ratios. 893 

Finally, the performance of stoichiometric schemes could be sensitive to the differences in 894 

simulated biogeochemical processes and inventories between the models. For example, we have 895 

shown that the increased PO-PDiaz cohabitation partly explains the increases in ocean C 896 

sequestration in VarP:N. However, this process is partly controlled by Fe availability. Thus, 897 

when a different LGM sub-grid bathymetry mask adjusts sedimentary Fe fluxes and reduces both 898 

the global and euphotic zone Fe inventories, the implications of our VSMs are not as profound 899 

(section S4 and Table S6). The biogeochemistry in MESMO2 and cGENIE could be different 900 

from MOBI’s and so cause the differences in the variable stoichiometry effects. Further testing is 901 

needed to discover the sensitivities of any given stoichiometry model to variations in simulated 902 

biogeochemical processes and inventories.  903 
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The LGM climate state, with oligotrophic surface waters, increases the stoichiometric 904 

ratios across these studies. VarP:N EP C:P increases by 11 C units in the LGM, which is smaller 905 

than expected, per equation 1, based on the PO4 change but is caused by the increased prevalence 906 

of fixed stoichiometry PFTs (Figures 5, 7 and Table 1). Matsumoto et al.’s (2020) LGM GM15 907 

C:P is substantially lower than ours at 120:1 but their C:P ratios increase by approximately the 908 

same magnitude between the PI and LGM as our simulations. Conversely, their power law model 909 

induces a 27-unit C:P increase, bringing it to about the same ratio as VarP:N. Ödalen et al.’s 910 

(2020) LGM GM15 experiment sees a similar increase to VarP:N at 13 units. The VarSi:N and 911 

Tuned experiments show increases of 15 and 18 C units, respectively.  912 

The EP C:P change consequently alters the POC and POP export. The power law model 913 

causes a smaller impact on C export (Matsumoto et al., 2020; Tanioka & Matsumoto, 2017, 914 

2020). They found a 0.04 Pg C year-1 increase in the PI while our VarP:N shows a 0.59 Pg C 915 

year-1 increase (Table 1) (Tanioka & Matsumoto, 2017). Subsequently, Matsumoto et al.'s (2020) 916 

PI C export shows a 0.4 Pg C year-1 power law increase and 0.1 Pg C year-1 decrease under 917 

GM15. The 2020 power law revision brings the two models into much better agreement with 918 

respect to absolute numbers, but their usage of GM15 produces a carbon export change, relative 919 

to the fixed-ratio simulations, that is of opposite sign to our results. All our simulations are 920 

consistent with observation-derived estimations though the range is broad (Boyd & Trull, 2007). 921 

Buchanan et al., (2019b) briefly report an increase of 0.4 Pg yr-1 in PI C EP due to GM15 in the 922 

CSIRO model.  923 

From the PI to LGM, the Control POC and POP reduce by the same 19% (Table 1). 924 

However, in VarP:N, the POP export reduced by 26% while the POC export only reduced by 925 

17.6%. Thus, sinking organic particles are more carbon-laden and the biological C pump is more 926 

efficient under VarP:N than the Control. Our remaining experiments, VarSi:N and Tuned, do not 927 

substantially alter these results. Ödalen et al.’s (2020) GM15 scheme reports a similar LGM POC 928 

export decrease, relative to the PI, of 5% less than their fixed stoichiometry simulation and 2% 929 

larger of a POP decrease. Matsumoto et al.’s (2020) GM15 showed the same POC export 930 

reduction but with a 5% larger POP reduction. Alternatively, under the power law, the POP 931 

reduced by a further 6%, compared to a fixed ratio simulation, and the POC export reduction was 932 

12% less. Thus, the biological pump responds similarly across three different climate models if 933 
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the GM15 scheme is implemented contrary to the notably different C:Ps. Matsumoto et al.’s 934 

(2020) annual C export decreases (LGM - PI) between 0.5 (power law), 1.1 (GM15), and 1.6 Pg 935 

C yr-1 (fixed), compared to 1.4 Pg C yr-1 in our Tuned model and 1.7 Pg C yr-1 in our Control 936 

experiment. Their GM15 LGM C EP quantification is very similar to our results, yet their power 937 

law model changes little and is closer to our PI C EP (Table 1). Ödalen et al. (2020) did not 938 

report any C export quantifications. 939 

With the similarities of our findings to other studies which use unique ocean 940 

biogeochemical and climate models, the quantifications of the biological carbon pump and the 941 

effects of including realistic variable stoichiometry presented here are reasonable and likely good 942 

approximations in the LGM climate. While our model carries some limitations and 943 

approximations, we have exemplified how the configuration of a model’s biogeochemistry may 944 

influence these quantifications of the biological C pump and the effects variable stoichiometric 945 

schemes may have on it. Further research on the sensitivities of variable stoichiometry schemes 946 

to various biogeochemical processes is needed. 947 

6. Conclusions 948 

Variable stoichiometry schemes allow simulated primary producers to adapt to a variety 949 

of nutrient environments consistent with observations. The variable N:P scheme implemented in 950 

our ocean biogeochemistry model allowed PO to exhibit P flexibility as the ambient PO4 951 

concentration varies. The P flexibility has two important consequences. First, the PO P limitation 952 

is reduced, allowing them to grow more in low-PO4 environments, fix more C there, and become 953 

relatively more C-laden. Second, the PO PO4 frugalness stokes an ecological response via 954 

increased PO4 availability for PDiaz, leading to an improved cohabitation between PO and PDiaz, 955 

more net N and C fixation, and higher net C EP. The first consequence describes how N:P 956 

flexibility enhances the biological C pump’s efficiency (i.e., more C export per P), and the 957 

second, how it can strengthen of the biological C pump by supporting a larger primary producer 958 

biomass. While the variable Si:N scheme did not show the same strong influence over the C 959 

pump, it does showcase how realistic modeling of nutrient quota ratios may improve 960 

representations of biogeochemical cycles. 961 
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The LGM experiments suggest that the new nutrient flexibility allows the formation of 962 

diverse phytoplankton communities, more responsive and interactive ocean biogeochemical 963 

cycles, and increased ocean carbon storage with lower pCO2. Our results, in addition to other 964 

studies, then suggest that the robustness of model performance in various climate states may 965 

depend, at least in part, on capturing the variability of ocean primary producers and their 966 

community structures. We find that capturing these attributes leads to 78 – 90 Pg more ocean 967 

carbon storage, realized through both the DIC and DOC inventories, in the LGM ocean as 968 

compared to fixed stoichiometry. We identify the DOC response as a significant but previously 969 

overlooked C storage mechanism in this context. Increased ocean C storage, thus, causes pCO2 970 

to be 13 – 14 ppm lower in the VSMs. Variable stoichiometry may then explain a notable portion 971 

of the pCO2 difference between the PI and LGM climates while unveiling important mechanisms 972 

within primary producer communities and biogeochemical cycles that partly define the ocean 973 

carbon cycle. 974 
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Introduction  

We provide, here, further model validation and performance analysis against observed 

ocean biogeochemical datasets (Text S1, Figure S1–S7, and Table S1). Text S2 (Figures S8-S13 

and Table S2) provides necessary model outputs to support and evidence statements made in the 

main text. Text S3 presents explicit modeled carbon inventory quantifications and distributions 

(Figures S14-S18 and Tables S3-S5), while further exploring the diatom model effects on ocean 

carbon stocks in Text S3.1. Text S4 explores the sensitivity of selected variable stoichiometry 

models to tertiary simulated biogeochemical processes (Figure S19 and Table S6). Text S5 

compares simulated nitrogen isotopes to observed preindustrial and Last Glacial Maxima 

datasets (Figures S20-S25, Table S7). Lastly, Text S6 describes the relevant biogeochemical 

equations implemented or altered in the model (University of Victoria, Earth System Climate 

Model – Model of Ocean Biogeochemistry and Isotopes) for the variable stoichiometry 

configuration (Table S8). 

  



 

 

Text S1. Variable Stoichiometry and Nutrient Simulations 

S1.1: Statistical Performance of Simulated Surface Nutrients 

Table S1 summarizes statistical metrics of the simulated nutrient distributions relative to 

observed data from the World Ocean Atlas, 2013 (Garcia et al., 2013; Letscher et al., 2013; 

Mather et al., 2008). R is the correlation coefficient; the Tuned experiment, here, generally 

outperforms all other simulations except forNO3 where it is slightly less accurate than the 

Control. STDR expresses the ratio of standard deviations of the model data to observations 

measuring how well the model captures the natural variability. The Tuned model again performs 

the best comprehensively, except with the PO4 simulations. Here, all model configurations 

struggle with the Control simulation capturing the variance best. However, out of the three 

variable stoichiometry model (VSM) configurations, the Tuned model is the most accurate. 

RMSE is the uncertainty-corrected root mean square error where the Tuned model configuration 

has the smallest error, but it is approximately matched by the Control experiment in the NO3 

simulations. Lastly, the RMS Prime is essentially the same as the RMSE but the bias of the 

global means of the observations and the models have been removed. The RMS Prime values are 

all exceedingly similar to the RMSE indicating the model global averages are all similar to the 

observed global mean. These statistical calculation methods were developed and described in 

Muglia et al. (2018). 

Table S1. PI Surface (0-120 m) Nutrient Statistical Assessment. 

NO3 R STDR RMS prime RMSE 

Control 0.89 0.96 0.46 0.49 

VarP:N 0.86 1.12 0.58 0.58 

VarSi:N 0.86 1.17 0.60 0.60 

Tuned 0.89 1.02 0.48 0.49 

PO4 R STDR RMS prime RMSE 

Control 0.89 0.92 0.45 0.48 

VarP:N 0.89 0.86 0.46 0.55 

VarSi:N 0.89 0.85 0.46 0.54 

Tuned 0.90 0.89 0.44 0.48 

Si R STDR RMS prime RMSE 

Control 0.86 1.27 0.64 0.66 

VarP:N 0.87 1.25 0.63 0.64 

VarSi:N 0.90 1.00 0.44 0.47 

Tuned 0.91 0.99 0.43 0.47 

 

  



 

 

S1.2: Global Maps of Surface Nutrients 

 

Figure S1. Surface Nitrate comparison. 



 

 

 

Figure S2. Surface Phosphate comparison. 



 

 

 

Figure S3. Surface Silicate comparison. 



 

 

 

Figure S4. Dissolved organic nutrients, zonally averaged, with nitrogen (left) and phosphorus 

(right) in the surface ocean (0 – 120 m). Remineralization rates were increased 5-fold, resulting 

in the Tuned simulation better approximating the observations. 

S1.3: N* Comparison and Analysis 

N* is defined as (Gruber & Sarmiento, 1997; Sarmiento & Gruber, 2006):  

𝑁∗ = 𝑁𝑂3 − 16 × 𝑃𝑂4 + 2.9 (𝑚𝑚𝑜𝑙 𝑚−3)     (S1) 

Calculating the absolute value of differences for N* comparisons: 

|𝛥𝑁∗| = |𝑁𝑚𝑜𝑑𝑒𝑙
∗ − 𝑁𝑜𝑏𝑠

∗ | = |(𝑁𝑂3
𝑚𝑜𝑑𝑒𝑙 − 16 × 𝑃𝑂4

𝑚𝑜𝑑𝑒𝑙) − (𝑁𝑂3
𝑜𝑏𝑠 − 16 × 𝑃𝑂4

𝑜𝑏𝑠)| (S2) 

= |𝑁𝑂3
𝑚𝑜𝑑𝑒𝑙 − 𝑁𝑂3

𝑜𝑏𝑠 − 16 × 𝑃𝑂4
𝑚𝑜𝑑𝑒𝑙 + 16 × 𝑃𝑂4

𝑜𝑏𝑠|    

            = |(𝑁𝑂3
𝑚𝑜𝑑𝑒𝑙 −  𝑁𝑂3

𝑜𝑏𝑠) − (16 × 𝑃𝑂4
𝑚𝑜𝑑𝑒𝑙  − 16 × 𝑃𝑂4

𝑜𝑏𝑠)|   

= |𝛥𝑁𝑂3 − 16 × 𝛥𝑃𝑂4|        

 Therefore, in the case that 𝛥𝑁𝑂3 = 0, 𝛥𝑃𝑂4 exclusively causes 𝛥𝑁∗: 



 

 

|𝛥𝑁∗| − |16 × 𝛥𝑃𝑂4| = 0 

 Conversely, if 𝛥𝑃𝑂4 = 0, 𝛥𝑁𝑂3 exclusively causes 𝛥𝑁∗: 

|𝛥𝑁𝑂3| − |𝛥𝑁∗| = 0



 

 

 

   

Figure S5. Deviations from observed zonally averaged N* values in each experiment 

caused by NO3 (top) or PO4 (bottom) simulation inaccuracies. The dashed lines show the 

absolute magnitude of the difference in N* between the observations and a given 



 

 

experiment, whereas the solid lines show the NO3 or PO4 contribution to that difference. 

Thus, when two lines of a given color overlap, the corresponding nutrient is fully 

responsible for the N* deviation. See Equation S1 and S2, for calculation of N* 

differences. 

 

Figure S6. N* calculated from observation and simulations in the surface ocean (0 – 120 

m). See Equation S1. 



 

 

S1.4: Vertical Profiles of O2 and  NO3 

     

Figure S7. Vertical profiles of horizontally averaged O2 and NO3 in each ocean basin. 

  



 

 

Text S2. Primary Producer Responses 

S2.1: Global Limiting Nutrient Maps 

 

Figure S8. Primary limiting nutrients for each PFT in the surface ocean (0 – 120m). The 

accelerated DOM remineralization in Tuned decreases the PO and PDiat N limitation. 

Comparing VarSi:N to VarP:N (Figure 11), the PDiat Si limitation is increased. The 

dustier LGM tends to decrease the Fe limitation for all between the PI and LGM 

simulations. 

  



 

 

S2.2: NPP 

 

Figure S9. Changes in PI PO NPP between a given experiment and the Control. The left 

column of plots are the changes of NPP in N units, while the right are plots for P units 

recast (by a factor of 16) into pseudo-N units for easier comparison. 

 



 

 

 

Figure S10. Changes in LGM PO NPP between a given experiment and the Control. The 

left column of plots are the changes of NPP in N units, while the right are plots for P 

units recast (by a factor of 16) into pseudo-N units for easier comparison. 



 

 

 

Figure S11. Changes in Diatom NPP in response to VarP:N (top row), VarSi:N (middle 

Row), and Tuned (bottom row) in the surface ocean (0-120 m) during the PI (left column) 

and LGM (right column). Note the logarithmic color scale. 



 

 

S2.3: Relative Abundances 

Table S2. Globally integrated plankton biomasses and relative abundances. 

 Relative abundance (%) Biomass (N Tmol) 

PI PO  PDiaz PDiat PO  PDiaz PDiat PZ 

Control 44.1 1.9 54.0 4.0 0.2 4.9 5.7 

VarP:N 54.8 3.7 41.5 6.4 0.4 4.9 5.5 

VarSi:N 66.4 3.8 29.7 7.6 0.4 3.4 5.5 

Tuned 66.9 2.9 30.2 7.6 0.3 3.4 5.7 

LGM        

Control 41.5 2.0 56.6 3.1 0.2 4.2 4.7 

VarP:N 58.6 4.5 36.9 6.7 0.5 4.2 4.4 

VarSi:N 68.7 4.7 26.7 7.6 0.5 2.9 4.5 

Tuned 69.5 3.3 27.2 7.5 0.4 2.9 4.6 

Note. Relative abundances were calculated as the ratio of one PFT’s biomass to the total 

biomass of all primary producers, excluding all zooplankton and detritus.

 

Figure S12. The relative abundance of each PFT against surface ocean (0-120 m) PO4 

concentrations in the Control. 



 

 

 

Figure S13. Zonally averaged relative abundance of each PFT in the surface ocean (0-

120 m) in the PI (left column) and LGM (right column) oceans. 



 

 

Text S3. Carbon Export Production and Associated Variables 

Table S3. Global Carbon quantifications. 

PI pCO2 

(ppm) 

pCO2 

(Pg) 

Ocean total 

carbon 

(Pg) 

Ocean 

DIC 

(Pg) 

Ocean 

DOC 

(Pg) 

Ocean 

POC 

(Pg) 

DIC:Alkalinity 

(surface 

average) 

Land 

carbon  

(Pg) 

Control 273.3 573.9 37956 37674 280.1 1.5 0.8623 1808 

VarP:N 274.9 577.3 38366 37978 385.6 1.7 0.8621 1812 

VarSi:N 274.7 576.9 38255 37877 376.1 1.7 0.8623 1811 

Tuned 273.3 573.9 37505 37447 56.9 1.7 0.8623 1808 

LGM         

Control 204.7 429.9 38174 37931 242.0 1.3 0.8464 1334 

VarP:N 193.3 405.9 38662 38273 387.5 1.6 0.8427 1287 

VarSi:N 192.1 403.4 38558 38184 372.4 1.6 0.8426 1282 

Tuned 190.5 400.1 37813 37754 57.4 1.6 0.8418 1276 

Note. Land C does not include the 402 Pg of C buried under the ice in the LGM. 

Figure S14. The relationship between C export and PO4, which is used as a metric for 

oligotrophy. The PI is on the left with the Control in red and VarP:N in blue. The right is 

the same for the LGM. Based on the trendlines, VarP:N exports more C than the Control 

at low PO4. This holds for most of the PI ocean but is only valid up to 1.0 g PO4 m
-3 in 

the LGM. However, more LGM grid points have low PO4 than high. Thus, VarP:N 



 

 

exports more C than the Control. Many other nutrient (NO3, Fe, etc.) and environmental 

(light, temperature, etc.) variables regulate C export, hence the low r2 values. 

 

Figure S15. Carbon Export Production in the PI Control simulation with changes 

induced by the VSMs. 



 

 

 

Figure S16. Carbon Export Production in the LGM Control simulation with changes 

induced by the VSMs. 

Table S4. Linearized approximations of changes in DOC fluxes. 

 LGM – PI  

(Pg C year-1) 

Control VarP:N VarSi:N Tuned VarP:N - 

Control 

VarSi:N - 

Control 

Tuned - 

Control 

μPO

∗ (ΔPO) -0.07 0.04 0.01 0.01 0.11 0.08 0.08 

Δ(υPO
POTS) -0.18 -0.09 -0.18 -0.19 0.08 0.00 -0.02 

υPO
(ΔPO)TS -0.11 0.08 0.01 -0.01 0.19 0.12 0.10 

υPO
PO(ΔTS) -0.08 -0.15 -0.18 -0.18 -0.08 -0.10 -0.10 

Δ(𝜆DOC[DOC]TS) -0.46 -0.27 -0.31 -0.33 0.19 0.15 0.13 

𝜆DOC[DOC](ΔTS) -0.26 -0.39 -0.38 -0.38 -0.13 -0.13 -0.13 

𝜆DOC(Δ[DOC])TS -0.25 0.11 0.06 0.04 0.37 0.32 0.29 

Average 

Temperature (°C) 

-2.16 -2.27 -2.28 -2.28 -0.12 -0.13 -0.12 



 

 

Note. Selected variables are the PO specific (μ∗) and quadratic (υ) mortalities (Table S8), 

the temperature scaling function TS=1.066T, DOC remineralization (𝜆DOC), and the 

average temperature changes. The three right-most columns are the LGM to PI difference 

of a VSM compared to the same difference in the Control. Both decomposed terms that 

isolate changes in PO can be summed for the total PO effect on DOC and be compared to 

the corresponding temperature effect. 

 

Figure S17. Cross-sections of changes in DIC and DOC. Panels A and B show the 

VarP:N change in DOC in the PI and LGM Atlantic. The North Atlantic Deep Water 

(NADW) is visible in DOC’s trajectories. Notably, the shoaling of the NADW between 

the PI and LGM, moves upward the midlatitude deep Atlantic DOC maxima, inducing a 

negative signature there when comparing the relative LGM-PI DOC changes between 

VarP:N and Control in Panel C. Panel D the same relative changes but for DIC. 

  



 

 

S3.1: Diatom Carbon Export Production. 

The amount of PDiat-sourced C that is exported while adhered to the siliceous 

frustules can be approximated in the following manner. The surface ocean average Fe is 

weighted by the PDiat biomass and submitted as an argument to the VarSi:N model 

(Equation S4) to calculate the Si:N of PDiat. Once this ratio is divided into the Si export 

(𝑆𝑖𝐸𝑃), the result describes the ballasted N EP of PDiat as if there were no degradation of 

soft tissue. Therefore, we subtract off the remineralization and grazing terms from this 

value (Table S8). It can then be easily converted to C EP using the fixed C:N (Equation 

S5). The biogenic Si sinking velocity is captured in the 𝑆𝑖𝐸𝑃 variable. 

[𝐹𝑒]̅̅ ̅̅ ̅̅ =  
1

∫ 𝑃𝐷𝑇 𝑑𝑧
0

−120𝑚

× ∫ 𝐹𝑒 × 𝑃𝐷𝑇 𝑑𝑧
0

−120𝑚
                                 (S3) 

𝑆𝑖: 𝑁 (
𝑚𝑜𝑙

𝑚𝑜𝑙
) =  −𝛼 ∗ tanh(𝛽 ∗ [𝐹𝑒]̅̅ ̅̅ ̅̅ −  𝛾) + 𝜀                   (S4) 

𝑃𝐷𝑇𝐸𝑃
= [ 

𝑆𝑖𝐸𝑃

𝑆𝑖:𝑁
−  (1 − 𝛾)𝑃𝑧𝐺𝑃𝐷𝑇

∗ −  (1 − 𝜎1𝐷𝑂𝑀)𝜐𝑃𝐷𝑇
𝑃𝐷𝑇] × 𝐶: 𝑁       (S5) 

 Otherwise, if all the PDiat soft tissue is disassociated from the faster sinking 

biomineral, then the PDiat-only portion of the simulated detritus is given as 

𝑃𝐷𝑇𝐸𝑃_𝑠𝑜𝑓𝑡
= 𝑤𝐷ά[ (1 − 𝛾)𝑃𝑧𝐺𝑃𝐷𝑇

∗ −  (1 − 𝜎1𝐷𝑂𝑀)𝜐𝑃𝐷𝑇
𝑃𝐷𝑇] × 𝐶: 𝑁      (S6) 

Where ά is the timestep of biology used in the model and 𝑤𝐷 is the sinking velocity of 

the detritus. The remaining variables are described in Table S8.  

Table S5. Quantifications of the global Si inventory in the surface ocean (left column) 

and the C export from the surface ocean. 

PI Surface Si 

(Pg) 

C EP via biogenic 

Si (Pg year-1) 

C EP via detritus 

(Pg year-1) 

Control 37.1 3.2 0.3 

VarP:N 36.1 3.9 0.2 

VarSi:N 22.6 1.5 0.2 

Tuned 22.4 1.6 0.2 

LGM    

Control 24.0 2.4 0.2 

VarP:N 23.5 3.0 0.2 



 

 

VarSi:N 16.4 1.6 0.1 

Tuned 16.4 1.7 0.1 

Note. Total ocean Si inventories are ~9039 Pg but vary little between experiments. The 

middle column assumes organic matter adheres to the diatom siliceous frustules, while 

the right column assumes all soft organic matter sinks independently. 

The EP of exclusively soft PDiat POM, exported through the detritus inventory, at 

the bottom of the euphotic zone (120 m) and is ~5 - 10% of the PDiat C export when 

assuming adhesion to fast-sinking frustules (Table S5). Without the frustules, PDiat EP 

reduced by ~0.08 Pg C year-1 (~35%) from PI VarSi:N, instead of the ~2.4 Pg C year-1 

reduction (~62%) with the accelerated sinking. The model may also be notably 

underestimating the PDiat C EP in all simulations and may have notable implications for 

the C export quantifications and atmospheric CO2 changes between climate states. 

 

Figure S18. Silica leakage from the Southern Ocean in the LGM. The Pacific sector 

cross-section (a) and surface map (b) are in units of grams of Si m-3and show the 

transport of Si from the SO to the equatorial East Pacific. The CaCO3:POC export ratio 



 

 

(c) and contoured sea ice fraction are unitless. Changes in PDiat are in grams of C m-3. All 

panels show the difference between VarSi:N’s and VarP:N’s LGM to PI change, thus 

removing the climate shift’s effect on the selected variables and allowing exclusive 

visualization of the VarSi:N’s influence on the Si cycle. 

Text S4. Effects of Reduced Sedimentary Fe Fluxes in the LGM 

With the formation of massive ice sheets in the LGM came lower sea levels (~ 

125 m) (Lambeck et al., 2014; Muglia et al., 2018). The exposed continental shelves 

caused a reduction of the sedimentary Fe fluxes into the ocean (Muglia et al., 2017). The 

model configurations used in this study neglect an interactive ocean sediment module. 

Particulate organic matter (POM) is then instantaneously remineralized into the adjacent 

grid cell when it intersects the seafloor. We explored the effects of the altered ocean basin 

geometry in the LGM by including a recalculated sub-grid bathymetry (SGB) map for the 

LGM, but we emphasize there are large uncertainties in the model’s Fe cycle, as well as 

the parameterization of the sedimentary Fe flux rates, which rely on constant 

stoichiometric ratios (Galbraith et al., 2010; Muglia et al., 2017, 2018; Tagliabue et al., 

2009). Muglia et al. (2017) discuss in detail the potential limitations of the model’s LGM 

Fe cycling.  

The effects of the recalculated Fe sedimentary fluxes (Table S6) here are broadly 

consistent with those found by Muglia et al. (2017). The recalculated bathymetry map 

reduced the global ocean and euphotic zone Fe inventory but has notable implications 

when considering variable stoichiometry and the population dynamics of ocean primary 

producers. Of course, a reduction in euphotic zone Fe leads to reduced primary 

production, but when combined with VarP:N it also reduced the PO-PDiaz cohabitation 

(discussed in the main manuscript) thus reducing total NPP further. The revised 

sedimentary Fe fluxes expand the Fe limitation for all primary producers (see Figure 

S19). Ultimately, this leads to a reduction in C EP and reduced efficiency of the 

biological carbon pump which yields a smaller PI-to-LGM CO2 drawdown and higher 

simulated LGM atmospheric CO2 concentrations.  



 

 

Of the selected variables in Table S6, most change similarly in the Control and 

Tuned models in response to the new SGB. However, the N-fixations, denitrification, and 

phytoplankton variables change substantially, highlighting the Fe-sensitivity of the PO-

PDiaz cohabitation. These variables, as shown in the main text, are important for C export 

and ocean inventory quantifications. There are, however, some improvements to the 

simulated δ15N and δ13C as compared to observations, Table S7. The notable changes to 

N-fixation and denitrification, as opposed to the comparatively small changes in 

biological C export, explain the more profound impact that the new SGB has on δ15N 

representations as compared to the δ13C representations.  

Table S6. Comparison of selected parameters in response to adjusted LGM sedimentary 

Fe fluxes caused by lower sea levels. 

 Control Tuned 

ΔControl ΔTuned  Parameter PI 

SGB 

LGM 

SGB 

PI SGB LGM 

SGB 

Atmospheric CO2 

(ppm) 

204.7 205.9 190.5 197.2 1.2 6.7 

EP (Pg C year-1) 7.1 6.9 8.3 7.9 -0.2 -0.4 

Total Fe inventory 

(Tg) 

61.3 59.5 61.8 58.8 -1.8 -3.0 

Surface (0-120 m) 

Total Fe inventory 

(Tg) 

1.3 1.1 1.1 0.9 -0.2 -0.2 

N-Fixation (Tg 

year-1) 

145.9 100.8 224.3 108.3 -45.1 -116.0 

Water Column 

Denitrification (Tg 

year-1) 

92.6 53.1 155.4 40.7 -39.5 -114.7 

Benthic 

Denitrification (Tg 

year-1) 

66.5 58.7 86.3 69.1 -7.8 -17.1 

Total NO3 

Inventory (Pg) 

2615.4 2723.9 2848.5 2926 108.5 77.5 

Surface (0-120 m) 

NO3 (Pg) 

8.8 9.7 12.6 13.5 0.9 0.9 

PO biomass (N 

Tmol) 

3.0 2.9 7.5 5.6 -0.1 -1.9 



 

 

Diazotroph 

Biomass (N Tmol) 

0.2 0.1 0.4 0.2 0.0 -0.2 

Note. PI SGB indicates that the ocean geometry remained that of the PI ocean during the 

LGM simulation, while the other column refers to the recalculated LGM bathymetry due 

to lower sea levels. 

Thus, the influence of variable stoichiometry in ocean biogeochemical models can 

strongly depend on the configuration and accuracy of tertiary, biologically-relevant 

model components. Using a different Fe flux scheme substantially altered the modeled 

climate impacts our variable stoichiometry schemes had. It is alternatively possible that 

the inclusion of other earth system components in the model would diminish the 

importance of the SGB remineralization schemes. The variable stoichiometry influences 

will likely vary considerably in other global climate and/or ocean biogeochemical 

models. Further research and testing are needed to determine the sensitivity of these 

stoichiometry schemes to various biogeochemical processes. 

  



 

 

 

 

Figure S19. Comparison of each PFT limiting nutrients in response to changes in 

sedimentary Fe flux from lowered LGM sea levels and recalculated SGB. PI SGB 

configuration is on the left column and the LGM configuration is on the right. Both 

simulations are performed under identical LGM boundary conditions. 

Text S5. Variable Stoichiometry Effects on δ15N 



 

 

S5.1: Preindustrial 

VarP:N caused a larger N NPP increase than P NPP. From the Control, VarP:N 

global N NPP increased by ~13% while P NPP increased by only 2%. VarSi:N did not 

change either NPP considerably, while the Tuned model added another 3 and 5% 

increase, respectively (See Table 3 in main text). An increase in primary production 

consequently causes increased respiration, altering the O2 concentrations at depth, 

thereby changing denitrification rates (Figure S7, S22, and S24) (Somes et al., 2010). 

Each of these processes uniquely fractionate N isotopes, thus, δ15N values, which are 

used to constrain the model, are heavily influenced by variable stoichiometry (Schmittner 

& Somes, 2016; Somes et al., 2010). The VSMs did not substantially improve 

simulations of N isotopic ratios. In low oxygen areas, the increased export drives notable 

inaccuracies in simulated δ15N values. Many of these are corrected in the Tuned 

simulation. 



 

 

 

Figure S20. Vertical profiles of horizontally averaged δ15N in the preindustrial ocean. 



 

 

 

Figure S21. Changes in the δ15N of NO3 in response to VarP:N in the preindustrial ocean 

basins. 



 

 

 

Figure S22. Changes in the water column denitrification in response to VarP:N in the PI 

ocean basins. 

Against observed values, VarP:N and VarSi:N improve δ15N simulations in the 

upper Atlantic and Southern Oceans, above ~500 m, however, both overestimate values 

in the upper Indian and Pacific (Figure S20) (Somes et al., 2010). These overestimations 

correlate with regions of low oxygen, suggesting that the increased export of organic 

matter in VarP:N and VarSi:N is too high in these areas which subsequently yields too 



 

 

much denitrification that strongly increases δ15N values (Figures S21 and S22). Similar 

effects on δ15N was observed in the CSIRO model (Buchanan et al., 2019). The 

accelerated remineralization of the Tuned experiment corrects these overestimations in 

the upper Indian and Pacific Ocean basins, generally outperforming the Control 

simulation. All experiments underestimate δ15N at depth; the deep ocean values are 

similar across each basin but remain sensitive to the soft tissue pump as the enhancement 

of the EP from the VSMs causes preferential export of 14N. Here, the Tuned simulation 

does not best the Control but is only slightly less accurate (Table S7). δ15N data for the PI 

and LGM were compiled and compared against the Control model performance in 

previous works (Muglia et al., 2018; Schmittner & Somes, 2016; Somes et al., 2010). 

Table S7. Statistical performance of simulated δ15N and δ13C. Note the PI comparison is 

representative of the whole ocean volume. 

 PI δ15N: R STDR RMS Prime RMSE 

Control 0.75 1.26 0.84 0.84 

VarP:N 0.77 2.16 1.53 1.53 

VarSi:N 0.77 2.09 1.46 1.47 

Tuned 0.75 1.30 0.86 0.88 

LGM δ15N:     

Control 0.09 1.24 1.53 1.68 

Control + SGB 0.15 1.02 1.31 1.61 

VarP:N 0.05 1.94 2.14 2.26 

VarSi:N 0.06 2.02 2.20 2.28 

Tuned 0.06 1.67 1.90 1.98 

Tuned + SGB 0.23 1.08 1.29 1.66 

LGM δ13C:     

Control 0.79 0.97 0.64 0.65 

Control + SGB 0.79 0.96 0.63 0.64 

Tuned 0.79 0.97 0.64 0.74 

Tuned + SGB 0.79 0.92 0.62 0.63 

Note. Conversely, the LGM comparison is only representative of the surface ocean from 

where the bulk organic matter measured in the sediment cores originates. Values for each 

parameter are calculated as described in Muglia et al. (2018). 

S5.2: LGM 

LGM δ15N data, while spatially limited, represents the cumulative interplay 

between surface ocean δ15N values and subsequent fractionation by biological processes 

(Galbraith et al., 2013; Tesdal et al., 2013). Sedimented organic matter isotopic 



 

 

signatures are exemplary of surface signatures and so the δ15N of simulated detritus is 

compared to LGM data (Tesdal et al., 2013). The Control experiment mainly errs with 

overestimations of δ15N values in the surface North Pacific and Bering Sea by ~2-4‰ 

compared to the 5‰ of observations (Figure S23). VarP:N increases δ15N by an 

additional 2‰, causing a significant overestimation for most of the North Pacific. 

VarP:N also causes strong δ15N increases, ~9‰, off southern Central America and the 

Arabian Sea from the observed 9‰ and 5‰ values, respectively (Figure S23). Similar to 

the PI simulations, VarSi:N shows little effect on the δ15N values, whereas the Tuned 

simulation corrects the large overestimation caused by VarP:N in the North Pacific and 

Bering Sea. The δ15N values are reduced below those of the LGM Control and are in 

better agreement with the observed data, differing by ~1‰. δ15N off southern Central 

America and the Arabian Sea values remain elevated.  

 

Figure S23. δ15N of organic matter in the LGM averaged over the uppermost 120 m of 

the water column. Overlaid are observed values (Tesdal et al., 2013). 



 

 

In the LGM North Pacific, the effects of VarP:N are exacerbated; water column 

denitrification nearly triples from the Control between the levels of 1250 – 4000m 

(Figure S25). δ15N values here increased from 18 to ~42‰ (Figure S24). The Tuned 

model mitigates this strong δ15N increase and is similar to the Control experiment’s δ15N 

in this region. A similar increase in denitrification is seen at this location in the PI but is 

notably weaker and less spatially extensive (Figures S21 and S24). The differences in 

δ15N response to VarP:N between the PI and LGM oceans derive from the differences in 

NPP increases. In the PI ocean, VarP:N drove a 13% increase in N NPP compared to the 

Control run, while in the LGM, a 22% increase (Table 3 in the main text). Thus, the 

biological fractionation and denitrification influences on δ15N vary. 



 

 

 

Figure S24. Changes in the δ15N of NO3 in response to VarP:N in the LGM ocean basins. 



 

 

 

Figure S25. Changes in the water column denitrification in response to VarP:N in the 

LGM ocean basins. 

Text S6. Biogeochemical Equations and Description 

This section provides an explicit description of the new and revised prognostic 

equations for the implementation of the variable N:P scheme adapted from Galbraith and 

Martiny (2015). These are alterations of the MOBI equations in Somes and Oschlies 

(2015) with some portions described by external sources as referenced therein. The 



 

 

inclusion of the variable N:P model necessitated two new prognostic equations to 

explicitly calculate the P content (indicated by the subscript “〈𝑃〉“ of PO and detritus (D) 

and a reconfiguration of the predictive PO4 and DOP equations. The original N currency 

equation are noted with “〈𝑁〉“. See Table S8 for variable and symbol descriptions. 

 S7. 

𝜕𝑃𝑂4
3−

𝜕𝑡
= 𝜆𝐷𝑂𝑃𝐷𝑂𝑃 + 𝜇𝐷

∗ 𝐷𝑅𝑃:𝑁𝐷

+  𝑅𝑃:𝑁 [𝛾𝑃𝑧(1 − 𝜔) (
𝑅𝑁:𝑃

𝑅𝑃:𝑁𝐷𝑍

𝐺𝑃𝐷𝑍

∗ + 𝜁𝑃𝑂
𝐺𝑃𝑂

∗ +  𝐺𝑃𝐷𝑇

∗ + 𝐺𝑃𝑍

∗ + 𝜁𝐷𝐺𝐷
∗ )

+ (1 − 𝜎2𝐷𝑂𝑀)𝜇𝑃𝐷𝑇

∗ 𝑃𝐷𝑇 − (1 − 𝑢𝐷𝑂𝑃𝑃𝐷𝑇
) 𝐽𝐷𝑇

∗ 𝑃𝐷𝑇]

+ 𝑅𝑃:𝑁𝑃𝑂
[(1 − 𝜎2𝐷𝑂𝑀)𝜇𝑃𝑂

∗ 𝑃𝑂 + 𝑢𝐷𝑂𝑃𝑃𝑂
𝐽𝑃𝑜

∗ 𝑃𝑂] − 𝑅𝐺𝑀15𝐽𝑃𝑜

∗ 𝑃𝑂

− 𝑅𝑃:𝑁𝐷𝑍
(1 − 𝑢𝐷𝑂𝑃𝑃𝐷𝑍

) 𝐽𝐷𝑍
∗ 𝑃𝐷𝑍 

S8. Similar to Equation S7, nutrients are added to the DOP inventory at a ratio equal to 

the calculated N:P of PO and detritus (S13). However, the uptake of DOP and DON is 

consumed at this same ratio, not by the GM15 N:P. 

𝜕𝐷𝑂𝑃

𝜕𝑡
=   𝑅𝑃:𝑁 [𝜎1𝐷𝑂𝑀𝜐𝑃𝐷𝑇

𝑃𝐷𝑇 + 𝜎2𝐷𝑂𝑀𝜇𝑃𝐷𝑇

∗ 𝑃𝐷𝑇 − 𝑢𝐷𝑂𝑃𝑃𝐷𝑇
𝐽𝐷𝑇

∗ 𝑃𝐷𝑇]

+ 𝑅𝑃:𝑁𝑃𝑂
(𝜎1𝐷𝑂𝑀𝜐𝑃𝑂

𝑃𝑂 + 𝜎2𝐷𝑂𝑀𝜇𝑃𝑂

∗ 𝑃𝑂 − 𝑢𝐷𝑂𝑃𝑃𝑂
𝐽𝑃𝑜

∗ 𝑃𝑂)

− 𝑅𝑃:𝑁𝐷𝑍
𝑢𝐷𝑂𝑃𝑃𝐷𝑍

𝐽𝐷𝑍
∗ 𝑃𝐷𝑍 − 𝜆𝐷𝑂𝑃𝐷𝑂𝑃 

S9. 

𝜕𝑃𝑂〈𝑁〉

𝜕𝑡
= 𝐽𝑃𝑜

∗ 𝑃𝑂 − 𝜇𝑃𝑂

∗ 𝑃𝑂 − 𝜐𝑃𝑂
𝑃𝑂 − 𝜁𝑃𝑂

𝐺𝑃𝑂

∗ 𝑃𝑧 

S10. The PO equation in the P currency is, again, sourced at a ratio to the N currency 

version that is determined by the GM15 N:P equation. Reductions to this inventory are at 

the N:P of the PO. 



 

 

𝜕𝑃𝑂〈𝑃〉

𝜕𝑡
= 𝑅𝐺𝑀15𝐽𝑃𝑜

∗ 𝑃𝑂 − 𝑅𝑃:𝑁𝑃𝑂
(𝜇𝑃𝑂

∗ 𝑃𝑂 + 𝜐𝑃𝑂
𝑃𝑂 + 𝜁𝑃𝑂

𝐺𝑃𝑂

∗ 𝑃𝑧) 

S11. 

𝜕𝐷〈𝑁〉

𝜕𝑡
= (1 − 𝛾)𝑃𝑧(𝐺𝑃𝐷𝑍

∗ + 𝜁𝐺𝑃𝑂

∗ + 𝐺𝑃𝐷𝑇

∗ + 𝐺𝑃𝑍

∗ + 𝜁𝐺𝐷
∗ ) + (1 − 𝜎1𝐷𝑂𝑀)𝜐𝑃𝑂

𝑃𝑂 − 𝜇𝐷
∗ 𝐷

− 𝜁𝐷𝐺𝐷
∗ 𝑃𝑧 + (1 − 𝜎1𝐷𝑂𝑀)𝜐𝑃𝐷𝑇

𝑃𝐷𝑇 +  
𝑅𝑁:𝑃

𝑅𝑁:𝑃𝐷𝑍

𝜐𝑃𝐷𝑍
𝑃𝐷𝑍 + 𝜐𝑃𝑍

𝑃𝑍
2 + 𝑤𝐷

𝜕𝐷

𝜕𝑧
 

S12. The N:P of the prognostic detritus is determined by the weighted combination of the 

different plankton groups and post-grazing detrital matter. 

𝜕𝐷〈𝑃〉

𝜕𝑡
 =  (1 − 𝛾)𝑃𝑧 [𝑅𝑃:𝑁( 𝐺𝑃𝐷𝑇

∗ + 𝐺𝑃𝑍

∗ ) + 𝑅𝑃:𝑁𝐷𝑍
𝐺𝑃𝐷𝑍

∗ + 𝜁𝑃𝑂
𝐺𝑃𝑂

∗ (𝑅𝑃:𝑁𝑃𝑂
− 𝛾𝑅𝑃:𝑁)

+ 𝜁𝐷𝐺𝐷
∗ (𝑅𝑃:𝑁𝐷

− 𝛾𝑅𝑃:𝑁)]

+ 𝑅𝑃:𝑁  [𝜐𝑃𝑍
𝑃𝑍

2 +  
𝑅𝑁:𝑃

𝑅𝑁:𝑃𝐷𝑍

𝜐𝑃𝐷𝑍
𝑃𝐷𝑍 + (1 − 𝜎1𝐷𝑂𝑀)𝜐𝑃𝐷𝑇

𝑃𝐷𝑇]

+ 𝑅𝑃:𝑁𝐷
(𝑤𝐷

𝜕𝐷

𝜕𝑧
− 𝜁𝐷𝐺𝐷

∗ 𝑃𝑧 − 𝜇𝐷
∗ 𝐷) + 𝑅𝑃:𝑁𝑃𝑂

(1 − 𝜎1𝐷𝑂𝑀)𝜐𝑃𝑂
𝑃𝑂 

S13. Expression of the PO and detritus P:N for each timestep and grid box. 

𝑅𝑃:𝑁𝑋
=

𝑋〈𝑃〉

𝑋〈𝑁〉
, 

where       X = [PO, D]. 

S14.  𝜁 acts to regulate the zooplankton grazing on PO and detritus that are now under 

variable stoichiometry schemes. If a grazed particle is lacking in P, it is viewed as not 

nutritious, and the grazing is turned off. This was done to preserve the computational 

efficiency and realism of having fixed zooplankton stoichiometry without having 

unrealistic instantaneous remineralization of organic matter into inorganic nutrient 

constituents.   



 

 

𝜁𝑋 = {
𝑅𝑃:𝑁𝑋

≥ 𝛾𝑅𝑃:𝑁 ;   𝜁𝑋 = 1

𝑅𝑃:𝑁𝑋
< 𝛾𝑅𝑃:𝑁 ;   𝜁𝑋 = 0

 . 

Table S8. List of biogeochemical variables, their symbols, values, and units. 

  
Variable/Description Symbol Value Units 

Ordinary Phytoplankton 𝑃𝑂 - mol m-3 

Diazotrophs 𝑃𝐷𝑖𝑎𝑧  - mol m-3 

Diatoms 𝑃𝐷𝑖𝑎𝑡 - mol m-3 

Zooplankton 𝑃𝑍 - mol m-3 

Detritus 𝐷 - mol m-3 

DOP remineralization rate 𝜆𝐷𝑂𝑃 - day-1 

DON remineralization rate 𝜆𝐷𝑂𝑁 - day-1 

Detritus remineralization rate 𝜇𝐷
∗  - day-1 

Zooplankton assimilation efficiency 𝛾 0.7 day-1 

Zooplankton growth efficiency 𝜔 0.54 - 

Grazing rate 𝐺∗ - - 

Selective grazing regulator 𝜁 0, 1 - 

Fraction of phytoplankton mortality routed to DOM 𝜎1 0.1 - 

Fraction of microbial fast-recycling routed to DOM 𝜎2 0.08 - 

Quadratic mortality rate  𝜐 - day-1 

Specific mortality rate  𝜇∗  day-1 

Phosphorus uptake source regulator 𝑢𝐷𝑂𝑃 0, 𝐽∗ - 

Growth rate 𝐽∗ - - 

Variable P:N uptake as defined by GM15 𝑅𝐺𝑀15 - mol mol-1 

Redfield P:N 𝑅𝑃:𝑁 1/16 mol mol-1 

Diazotroph P:N 𝑅𝑃:𝑁𝐷𝑍
 1/40 mol mol-1 

Variable traced in N units <N> - - 

Variable traced in P units <P> - - 

Sinking Velocity of POM 𝑤𝐷 - s-1 

Note. A “-“ in the value column indicates that the item is variable as a function of nutrient 

availability, temperature, etc. (Somes & Oschlies, 2015). 


