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ABSTRACT

Separating low-frequency internal variability of the climate system from the forced signal is essential to

better understand anthropogenic climate change as well as internal climate variability. Here both synthetic

time series and the historical simulations from phase 5 of CMIP (CMIP5) are used to examine several

methods of performing this separation. Linear detrending, as is commonly used in studies of low-frequency

climate variability, is found to introduce large biases in both amplitude and phase of the estimated internal

variability. Using estimates of the forced signal obtained from ensembles of climate simulations can reduce

these biases, particularly when the forced signal is scaled to match the historical time series of each ensemble

member. These so-called scaling methods also provide estimates of model sensitivities to different types of

external forcing. Applying the methods to observations of the Atlantic multidecadal oscillation leads to

different estimates of the phase of this mode of variability in recent decades.

1. Introduction

Internally generated natural variability is an impor-

tant part of the climate system. Although the longest-

term, largest-scale climate trends are dominated by

external forcing, internal variability plays a vital role at

shorter time scales and at smaller spatial scales. An ex-

ample is the recent slowdown in global surface warming,

which has led to heightened scrutiny of the role played

by both forced and internal climate variability on de-

cadal to multidecadal time scales. Among the outstanding

underlying issues is how best to separate internal vari-

ability from the forced climate signal.

For the actual climate, we have only one realization of

the internal variability and it is nontrivial to extract it

from the available data. Schurer et al. (2013) used proxy

reconstructions and model simulations to estimate the

contributions of internal variability and external forcing

over the last millennium. Estimating the forced signal

during the historical era is complicated by the short

length of the observational record and the challenge this

creates in isolating low-frequency, multidecadal, and

longer-term internal variability (Frankcombe et al.

2015). In addition, the dominant influence on climate in

the most recent period is anthropogenic forcing, in-

cluding greenhouse gases (GHGs), tropospheric aerosols,

and ozone-depleting substances, each of which must

separately be taken into account. One recent body of

research, for example, has sought to ascertain how much

of the mid-twentieth-century temperature variability is

due to anthropogenic aerosols and how much is due to

internal variability (Booth et al. 2012; Zhang et al. 2013).

Mann et al. (2014) used observations to investigate the

effect of biases caused by the incorrect partition of ob-

served Northern Hemisphere temperatures into forced
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and internal components. Steinman et al. (2015) extended

that work to study the relative contributions of the North

Atlantic and North Pacific to the observed internal vari-

ability of the Northern Hemisphere.

In this paper we compare various methods for sepa-

rating the forced signal from the background of internal

variability and examine the biases that may result from

the different methods. We focus on the specific example

of multidecadal North Atlantic sea surface temperature

(SST) variability, but the results have broader implica-

tions for the problem of separating forced and internal

climate variability.

Enhanced variability on multidecadal time scales

centered in the North Atlantic has been found in mod-

ern observational climate data (Folland et al. 1984, 1986;

Kushnir 1994;Mann and Park 1994; Delworth andMann

2000) and in long-term climate proxy data (e.g., Mann

et al. 1995; Delworth andMann 2000). Such variability is

also generated in a range ofmodels from idealized ocean

models to full GCMs (Delworth et al. 1993, 1997; Huck

et al. 1999; Knight et al. 2005; Parker et al. 2007; Ting

et al. 2011; Zhang and Wang 2013). The variability has

been named the Atlantic multidecadal oscillation (AMO;

Kerr 2000) or, alternatively, Atlantic multidecadal vari-

ability (AMV) since it is unclear whether it truly consti-

tutes a narrowband oscillatory climate signal. In this study,

we do not attempt to address the mechanisms causing the

variability; we instead focus on North Atlantic SST vari-

ability as a case study in the application of competing

statistical approaches to separating internal and external

variability.

The rest of this paper is divided as follows: We first

describe the data used in the study (section 2) and then

describe the various competing methods for separating

forced and internal variability (section 3). The methods

are tested on synthetic data, where the true internal and

external signals are known (section 4), and then applied

to CMIP5 historical simulations (section 5) and obser-

vational data (section 6). We then discuss the results of

our analyses (section 7) and finally summarize with our

conclusions (section 8).

2. Data

One often-usedmeasure of AMV is the smoothed and

linearly detrended average of North Atlantic SSTs (e.g.,

Sutton and Hodson 2003). We calculate an index of

North Atlantic variability by averaging SST over the

region 08–608N, 58–758W but do not detrend the series,

for reasons that will become clear later in the discussion.

We will call this raw index the North Atlantic SST index

(NASSTI). Estimates of the internal variability ob-

tained from the NASSTI using the methods tested here

are referred to as Atlantic multidecadal oscillation in-

dices (AMOI), since they are approximations of AMO/

AMV variability. We use the historical runs from phase

5 of the Coupled Model Intercomparison Project

(CMIP5; Taylor et al. 2012), employing the 145-yr

(1861–2005) interval spanned by nearly all ensemble

members. Simulations that do not span the full interval

are excluded, as are models in which the raw NASSTI

time series does not display significant multidecadal

variability. Two idealized historical scenarios—HistGHG

(in which only well-mixed greenhouse gas forcing is

applied) and HistNat (natural forcings only, including

solar variability and volcanoes)—are also used. The

CMIP5 models used are listed in Table 1. For compar-

ison to observations we use SST fromHadISST (Rayner

et al. 2003) between 1870 and 2005. Smoothed time se-

ries are calculated using a 40-yr adaptive low-pass filter

(Mann 2008).

3. Methods

Of the many methods used to separate the forced

signal and the internal variability, the most common is

the ‘‘detrended’’ approach, where a linear trend is sub-

tracted from the signal (e.g., Zhang and Wang 2013).

This method has the advantage of being extremely

simple and, in the absence of any better estimates of the

forced signal, may also be useful as a first approxima-

tion. The external forcing is not linear in time, however.

For this reason, the detrending procedure has been

shown to bias the amplitude and phase of the estimated

internal variability (Mann and Emanuel 2006; Mann

et al. 2014). Biases in the estimated phase will in turn

bias estimates of AMO periodicity.

An alternative method, referred to as the ‘‘differ-

enced’’ method, employs a large ensemble of climate

simulations. Each individual ensemble member re-

sponds to the external forcing applied to the model, but

it also contains a realization of internal variability. If

the ensemble members are initialized so as to be in-

dependent of each other, then they will each contain a

different realization of the internal variability. Averag-

ing over a large number of these ensemble members will

average out the internal variability so that the signal

remaining is the model response to the external forcing.

Subtracting this model-mean response from each

ensemble member gives the internal variability. This

method has the advantage that it does not make prior

assumptions about the model response to external

forcing. The method does, however, rely on each

member of the ensemble having the same response to

the external forcing, which is not necessarily the case.

The strength of a model’s response to external forcing is
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represented by the equilibrium climate sensitivity

(ECS), which is the equilibrium change in annual global-

mean surface temperature after a doubling of the at-

mospheric CO2 concentration relative to preindustrial

levels. The CMIP5 models have equilibrium climate

sensitivities of between 2.18 and 4.78C (Flato et al. 2013).

Even for an ensemble of realizations from a single cli-

mate model, the estimates of climate sensitivity derived

from a single ensemblemembermay differ from the true

model sensitivity because of the noise introduced by

TABLE 1. CMIP5 models used. Some models list more than one control run length, indicating that various sections of control runs were

available. (Expansions of acronyms are available at http://www.ametsoc.org/PubsAcronymList.)

Model name Length of control run (yr) Historical HistNat HistGHG

BCC_CSM1.1 500 3 1 1

BCC_CSM1.1(m) 400 3 — —

BNU-ESM 559 1 — —

CanESM2 996 5 5 5

CMCC-CESM 277 1 — —

CMCC-CM 330 1 — —

CMCC-CMS 500 1 — —

CNRM-CM5 850 10 6 6

CNRM-CM5.2 410 1 — —

ACCESS1.0 500 2 — —

ACCESS1.3 500 3 2 2

CSIRO Mk3.6.0 500 10 5 5

FIO-ESM 800 3 — —

EC-EARTH 451 13 — —

INM-CM4.0 500 1 — —

IPSL-CM5A-LR 1000 6 3 5

IPSL-CM5A-MR 300 3 3 3

IPSL-CM5B-LR 300 1 — —

FGOALS-g2 700 4 3 1

MIROC-ESM 680 3 3 3

MIROC-ESM-CHEM 255 1 1 1

MIROC5 — 5 — —

HadCM3 — 10 10 —

HadGEM2-CC 240 1 — —

HadGEM2-ES 577 5 4 4

MPI-ESM-LR 1000 3 — —

MPI-ESM-MR 1000 3 — —

MPI-ESM-P 1155 2 — —

MRI-CGCM3 500 5 1 1

MRI-ESM1 — 1 — —

GISS-E2-H 1470 1 531 15 5 5

GISS-E2-H-CC 251 1 — —

GISS-E2-R 251 1 1200 1 531 1 531 1 1163 25 10 5

GISS-E2-R-CC 250 1 — —

CCSM4 1051 1 156 6 4 3

NorESM1-M 500 3 1 1

NorESM1-ME 251 1 — —

GFDL CM2.1 — 10 10 —

GFDL CM3 500 5 3 3

GFDL-ESM2G 500 1 — —

GFDL-ESM2M 500 1 1 1

CESM1(BGC)a 500 1 — —

CESM1(CAM5) 319 3 3 3

CESM1(CAM5, FV2)b — 4 2 1

CESM1(FASTCHEM) 222 3 — —

CESM1(WACCM) 200 1 — —

CSIRO Mk3L.1.2c 1000 2 — —

Total 194 66 59

a BGC indicates biogeochemistry.
b FV2 indicates finite-volume dynamical core with 28 model output.
c A combination of the low-resolution atmospheric component of CSIRO Mk3 and the ocean component of CSIRO Mk2.
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internal variability (Huber et al. 2014). Furthermore, in

the case of amultimodel ensemble, each individualmodel

will have a different climate sensitivity altogether. The

multimodel mean (MMM) represents an average across

models that both overestimate (i.e., high-sensitivity

models) and underestimate (i.e., low-sensitivity models)

the forced response. The MMM will therefore over-

estimate themagnitude of the forced response for models

with low sensitivity and underestimate it for models with

high sensitivity. The differenced method thus potentially

introduces a bias when used to estimate the internal

variability of the various models. Although small during

the earlier part of the historical record when the ampli-

tude of the forced signal is modest, the bias becomes

significant toward the end of the historical period and

increasingly dominates over the signal of internal vari-

ability in any future projections.

One method to mitigate this bias, the ‘‘scaling’’

method, is described by Steinman et al. (2015). In this

method the multimodel mean of the CMIP5 historical

all-forcing ensemble is taken to be the best estimate of

the climate response to external forcing and is then

scaled to match the climate sensitivity of each individual

ensemble member. For the test case described here the

multimodel mean of the NASSTI is linearly regressed

on to the NASSTI time series of each ensemble member

from the CMIP5 historical all-forcing ensemble to ob-

tain an estimate of the forced signal:

R
1
(t)5b

c
1bMMM

all
(t) , (1)

where bc is a constant, b is the scaling factor, and

MMMall is the multimodel mean of the NASSTI from

the CMIP5 all-forcing ensemble. The regression co-

efficient b is a measure of the relative climate sensitivity

of each ensemble member compared to MMMall and is

thus model dependent. The component of the time se-

ries of each ensemble member not explained by the

scaled multimodel mean is taken as an estimate of the

internal variability in the North Atlantic N1 and is re-

covered by subtracting R1, the estimate of each ensem-

blemember’s forced response, fromH, the time series of

each ensemble member from the historical simulation:

N
1
(t)5H(t)2R

1
(t) . (2)

This method, which we term the ‘‘single factor scal-

ing’’ method, results in much better estimation of phase

and amplitude of low-frequency variability than the

detrending and differencing methods (Steinman et al.

2015). It, too, however, is not completely free of po-

tential biases. Consider that external forcing during the

historical period has contributions from both green-

house gases and aerosols (both anthropogenic and

volcanic) and that different models may have different

amplitude responses to the different types of forcing.

Indeed, different models may have different specifica-

tions and implementations of the various forcing com-

ponents. The single factor scaling method, however,

uses a single regression coefficient to account for all

external forcing. While the method performs well over

the historical period (Steinman et al. 2015), application

of the method to future projections, which contain an

increasingly large contribution from one particular

forcing (anthropogenic greenhouse gases), could result

in biases at the ends of the time series.

In addition to the single factor scaling method we test

twomodified scalingmethods where two or three scaling

factors are used. While in the single factor scaling

method the (single) scaling factor represents the com-

bined model response to all external forcings, in the

modified scaling approaches different scaling factors are

used to represent the model responses to different types

of external forcing—in effect the different efficacies of

the different forcings. For the modified scaling method

using two scaling factors, estimates of the two factors for

each time series are calculated by multilinear regression

on the NASSTI time series of each ensemble member:

R
2
(t)5 g

c
1 g

GHG
MMM

GHG
(t)1 g

Nat
MMM

Nat
(t) , (3)

where gc is a constant and gGHG and gNat are the esti-

mated scaling factors. The first scaling factor represents

the model response to GHG forcing, while the second

represents themodel response to natural forcing, such as

volcanic aerosols and solar variability. The estimates of

the GHG and natural responses are obtained from the

multimodel means of the HistGHG and HistNat simulations

of CMIP5 (MMMGHG and MMMNat, respectively). The

resulting estimate of the forced response is used to re-

cover an estimate of the internal variability as follows:

N
2
(t)5H(t)2R

2
(t) . (4)

In addition to GHG and natural forcings there are

also other forcings included in the all-forcing experi-

ments that should be taken into account (anthropogenic

aerosols and ozone being the most important in the

context of North Atlantic multidecadal variability), but

these cannot be robustly included because of the limited

number of ensemble members that performed these

individual forcing experiments. If sufficient simulations

of the various other forcings were available, then scaling

factors representing them could be included, in addition

to the scaling factors representing GHG and natural

forcings. As an estimate of these unrepresented forcings

we include a third scaling factor MMMrest, which is

the multimodel mean of the variability that remains
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unexplained after regressing MMMGHG and MMMNat

on MMMall:

MMM
rest

(t)5MMM
all
(t)2 «

GHG
MMM

GHG
(t)

1 «
Nat

MMM
Nat

(t) . (5)

The three factor scaling method is calculated as follows:

R
3
(t)5 d

c
1 d

GHG
MMM

GHG
(t)1 d

Nat
MMM

Nat
(t)

1 d
rest

MMM
rest

(t) and (6)

N
3
(t)5H(t)2R

3
(t) , (7)

where dc is a constant, and dGHG, dNat, and drest are the

estimated scaling factors for GHG forcing, natural

forcing, and residual forcing, respectively. The various

MMMs are shown in Fig. 1. Note that forcings included

in the all-forcing historical simulations but not in HistGHG

or HistNat may have, in addition to the forced signal

represented by MMMrest, additional projections onto

MMMGHG and MMMNat such that dGHG and dNat (and

indeed gGHG and gNat in the two scaling factor method)

represent sensitivities to combinations of forcings.

These scaling methods are analogous to the methods

of optimal fingerprinting used in detection and attribu-

tion studies (Allen and Tett 1999; Allen and Stott 2003).

The difference here is that we use a single time series

rather than spatial patterns and focus on extracting the

natural variability rather than the forced signal. The

three scaling methods were tested with both ordinary

least squares regression (as used by Steinman et al. 2015)

and total least squares regression (Allen and Stott 2003);

no significant differences were found between the two

regression methods.

The multiensemble, multimodel mean of the CMIP5

historical runs is used as the estimate of the forced signal

for the differenced and single factor scaling approaches.

Each ensemble member from each model is given equal

weight in the mean, which can lead to biasing toward

models that contribute a large ensemble to the CMIP5

archive. However, averaging the ensemble of each

model to get a model mean and then averaging all the

model means to get a multimodel mean, as is sometimes

done to account for differing ensemble sizes, results in

the internal variability of the members of large ensem-

bles being averaged out before they can contribute to

the multimodel mean. This method implicitly assumes

that internal variability is negligible and, in the presence

of the nonnegligible internal variability that is of interest

in this study, results in a bias toward the models that

contribute fewer ensemble members to the archive

(since each of the few ensemble members effectively

receives a larger weight in the multimodel averaging

process). In choosing to calculate the forced signal as a

multiensemble mean we are implicitly assuming that all

the ensemble members, from all the models, are drawn

from the same distribution (i.e., that all the models

perform equally). The limitations of this assumption will

be investigated later.

4. Analysis of the various methods using synthetic
data

To test the various methods in an idealized situation

where the true internal variability is known, we con-

struct synthetic AMOI time series using the null hy-

pothesis that the variability is due to red noise. Each

synthetic time series of internal variabilityN is a 145-yr-

long time series of red noise (the same length as the

CMIP5 historical runs), scaled by the average autocor-

relation and amplitude of the CMIP5 historical runs.

Three independent, random scaling factors (drawn from

the uniform distribution between 0.2 and 2) are used—

the first representing the response to GHG forcing

FIG. 1. Multimodel means of the NASSTI in the all-forcing ensemble (black), the natural

forcings ensemble (green), the GHG forcing ensemble (red), and the remainder after natural

forcing and GHG forcing are removed from the all-forcing ensemble (magenta). Annual data

are shown by the dashed lines while data smoothed with a 40-yr low-pass filter are shown by the

solid lines. Upward (downward) pointing triangles on the x axis indicate the position ofmaxima

(minima) of the four smoothed time series.
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(aGHG), the second the response to natural forcing

(aNat), and the third the response to any other forcings

(arest). The independence of the scaling factors is shown

in section 5 to be valid for the CMIP5 models; thus we

use that assumption for the synthetic time series here.

The synthetic historical time series were constructed by

adding forced variability to the natural variability as

follows:

H(t)5N(t)1a
GHG

MMM
GHG

(t)

1a
Nat

MMM
Nat

(t)1a
rest

MMM
rest

(t) , (8)

where H is the synthetic historical time series; N is

the synthetic time series of internal variability; and

MMMGHG, MMMNat, and MMMrest are the multimodel

means of the NASSTI time series representing GHG,

natural, and residual forcings from CMIP5, respectively

(as shown in Fig. 1). An ensemble of 5000 such time

series was constructed.

The five methods to remove the forced signal are then

applied to the synthetic data to find Nest, the estimated

internal variability. The accuracy of the methods can be

judged by comparing the estimated internal variability

Nest to the true time series N using a variety of metrics:

1) comparing the estimated scaling factors (b, g, and d)

to the known ones (a),

2) calculating error as a function of time,

3) finding minima and maxima of the estimated time

series compared to the known ones (to find the bias in

phase introduced by each method), and

4) calculating the amplitudes of the estimated time

series compared to the known ones (to find the bias

in amplitude introduced by each method).

This gives us a basis for comparison for the CMIP5

models, for which the true time series of internal vari-

ability are not known.

Figure 2 shows scatterplots of the estimated scaling

factors compared to the known scaling factors for the

three factor scaling method. In Fig. 2a we can see that

the true GHG scaling factor aGHG is well estimated by

dGHG, the GHG scaling factor from the three factor

method. This is also the case for the two factor scaling

method, with aGHG and gGHG being highly correlated.

For the single factor scaling method the scaling factor

b also correlates very well with aGHG, while the corre-

lation of b with aNat is small, although not negligible,

with higher aNat on average corresponding to larger

b for the same value of aGHG. This indicates that it is the

model sensitivity to GHG forcing which dominates over

the sensitivity to natural forcing in the single scaling

method. Figure 2b shows the accuracy with which aNat is

estimated using the three factor scaling method. The

accuracy is very similar for the two factor scaling

method. The accuracy of estimation of arest is shown in

Fig. 2c. This factor is the most difficult to estimate be-

cause MMMrest varies on similar time scales to the in-

ternal variability, so the two may easily be mistaken for

each other. The error in estimating aNat is smaller but

arises from the same source since the natural forcing

also contains variability on multidecadal time scales.

The error in estimating aGHG is the smallest of the three;

therefore, sensitivity toGHG forcing should be themost

robustly estimated parameter.

The error in each estimation can be calculated as a

function of time:

Err(t)5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[N

est
(t)2N(t)]2

q
. (9)

Figure 3a shows the mean error as a function of time for

the synthetic time series for the five different methods.

The raw NASSTI time series (gray lines) has errors

that increase with time as the external forcing becomes

increasingly dominant. The detrending method (blue

FIG. 2. Scatterplots of the known scaling coefficients compared to the estimates made using the three scale factor method for (a) aGHG vs

dGHG, (b) aNat vs dNat, and (c) arest vs drest for 5000 synthetic time series.
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lines) has large errors through the whole time series,

particularly at the beginning and end owing to the as-

sumption that the trend is linear. Errors in the differ-

encing method (green lines) increase toward the end of

the time series as a result of the increasing influence of

different models’ climate sensitivities. The single factor

scaling method (red lines) gives smaller errors than the

detrending and differencing methods, especially toward

the end of the time series, because theMMM is matched

to the model climate sensitivity by the scaling. Errors at

the beginning of the time series, however, are compa-

rable to the differencedmethod because GHG forcing is

FIG. 3. Time series of (a) mean error as a function of time (dashed; annual mean, solid; after

40-yr smoothing; note the log scale on the y axis) and (b) mean (solid) and one standard de-

viation on either side of themean (dashed) as a function of time of the 5000 synthetic time series

for the five methods. (c) Distribution of turning points as a function of time (solid lines indicating

maxima and dashed lines indicating minima), with triangles on the x axis indicating minima and

maxima of the MMMs as in Fig. 1. (d) Distribution of standard deviations of the estimated

variability for each method for the synthetic time series. Dashed vertical lines in (d) indicate the

means of the distributions.
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small and differing climate sensitivities of the models

thus have a minor impact. Errors using the single scaling

method increase during volcanic eruptions because the

single scaling factor is more sensitive to the GHG re-

sponse than the naturally forced response. Using two

scale factors (light blue lines) reduces the error in the

1940s (when there was a peak in MMMNat; see Fig. 1)

but not elsewhere, while the three factor scaling method

(magenta lines) results in a general improvement over

the other methods.

The means (solid curves) and standard deviations

(dashed curves) of the time series of estimated internal

variability are plotted in Fig. 3b as a function of time. By

construction, as the number of time series increases, the

mean of the true time series of internal variability ap-

proaches zero and the standard deviation approaches a

constant. The accuracy of the various methods is as-

sessed in comparison to this. This metric shows similar

results to Fig. 3a and is included for comparison with the

CMIP5 models, where the error cannot be directly cal-

culated since the true time series of internal variability

are not known.

The raw forced signal (gray) shows increasing de-

viation from the true time series (in black). The mean of

the detrended time series (blue) shows anomalous be-

havior particularly at the beginning and end. The mean

for the differenced case (green) is always zero by con-

struction (since we are subtracting the mean, the sum of

the remainders will be zero), while the standard de-

viation shows a large increase at the end of the run. The

single factor scaling method (red) shows a slightly larger

spread of amplitudes around the times of volcanic

eruptions. Themean for the two factor scaling case (light

blue) shows larger departures from zero than the other

two scaling cases during several periods (associated with

turning points of MMMrest; see Fig. 1), indicating that

the forced signal has not been completely removed. The

three factor scaling method (magenta) generally shows

the least spread, at times even having a lower standard

deviation than the true time series. The reason for this

reduction in amplitude will be discussed later. The dis-

crepancies between the various estimates relative to the

true time series all correspond to periods where the er-

rors (in Fig. 3a) are the largest.

To show the bias in the phase of the internal vari-

ability estimated using the various methods, the turning

points of the 40-yr smoothed time series are plotted in

Fig. 3c. Unbiased time series should show a uniform

distribution of both maxima (solid lines) and minima

(dashed lines) throughout the historical period. The true

time series (black), however, shows a decreasing num-

ber of both maxima and minima about 20 years from the

beginning and end of the time series as a result of the

edge effects of the 40-yr smoothing (which should

therefore be common to all five methods). Both the raw

forced time series (gray) and the detrended time series

(blue) have a bias toward minima in the 1890s and 1970s

with maxima in between, corresponding to turning

points in MMMNat (marked on the x axis in Fig. 3c).

Both methods also show very few maxima after the

1960s because of the increasing dominance of the an-

thropogenic warming signal, which is not correctly re-

moved. For the same reason, the differencing method

(green) also shows a decrease in the number of turning

points toward the end of the time series, which is larger

than the filtering-induced decrease. The single scaling

method (red) does a much improved job of finding the

maxima and minima, while the two factor scaling

method (light blue) results in large numbers of maxima

around 1880 and 1940 and minima in the 1910s and

1970s, coinciding with turning points of MMMrest. The

additional external forcing represented by MMMrest is

already implicitly included in MMMall, which is used in

the single scaling method, but it is not represented by

either MMMGHG or MMMNat used in the two factor

scaling method, which explains why the single scale

factor method outperforms the two scale factor method

when estimating phase of the internal variability. Of the

five methods, the three factor scaling method (magenta)

comes the closest to reproducing the true distribution

of phases.

The distribution of amplitudes of the 40-yr smoothed

time series of the estimated internal variability is shown

in Fig. 3d. Both detrending and differencing results in a

large overestimation of the amplitude. The scaling

methods all do a better job of estimating the amplitude,

although the single factor scaling method overestimates

the amplitude while the three factor scaling method

underestimates it. In the single scalingmethod this is due

to the sometimes incomplete removal of the natural

forcing signal, which will then be mistaken to be internal

variability. In the three factor scaling method the un-

derestimation is due to the opposite effect; when the

phase of the internal variability lines up with the vari-

ability in MMMNat or MMMrest, some of the internal

variability will be removed. The two factor scaling

method would appear to be the most accurate at esti-

mating the standard deviation of the internal variability,

although all the distributions are significantly different

from the true distribution using a two-sided Kolmogorov–

Smirnov test. This issue is explored further in Fig. 4.

In the detrending method the degree of overestima-

tion correlates with the magnitude of the sensitivity to

GHG (given by aGHG), with large sensitivities leading to

large estimates of natural variability (Fig. 4a). This is be-

cause large climate sensitivity results in highly nonlinear
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time series, for which a linear trend is a very poor ap-

proximation. In the differencedmethod it is the cases with

either large or small values of aGHG (dark blue and red

crosses in Fig. 4b) that have the largest overestimation of

amplitude because these are the cases for which the

MMM is the poorest approximation of the forced signal.

A similar, although less pronounced, bias occurs in the

single scaling case (Figs. 4c,d); here it is the cases with a

FIG. 4. Real vs estimated standard deviation of the synthetic time series for the

(a) detrending, (b) differencing, (c),(d) single scaling, (e) two factor scaling, and (f) three factor

scalingmethods. In (a)–(c) color represents the (known)GHG scaling factor aGHG, in (d) color

represents the (known) natural scaling factor aNat, and in (e),(f) it represents the (known)

residual scaling factor arest.
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large value of aGHG and a small value of aNat (or

conversely, a small value of aGHG and a large value of

aNat) that are overestimated. These are the cases for

which the single scaling method will be the worst fit to the

data because the single scaling method combines the

sensitivity to GHG aGHG and the sensitivity to natural

forcings aNat in one parameter; it is thus a better ap-

proximation for cases where aGHG and aNat are of similar

magnitude. For two factor scaling (Fig. 4e) the amplitude

in cases with large values ofarest is overestimated, which is

due to the misattribution of forced variability as internal

variability as mentioned earlier.

Although it would appear from the distributions of

standard deviations in Fig. 3d that the two factor scaling

methodmay give a better estimate of the amplitude than

the three factor scaling method, Fig. 4e shows that this

apparent improvement is due to the fact that the two

factor scaling method sometimes overestimates the real

amplitude (because of neglecting arest, causing mis-

attribution of the forced signal as internal variability)

and sometimes underestimates the real amplitude (be-

cause of misattribution of the internal variability as the

forced signal). In contrast, the three factor scaling

method (Fig. 4f) gives a tighter estimate of the ampli-

tudes, with a bias toward underestimation resulting from

misattribution of internal variability as the forced signal.

In summary, detrending and differencing, which are

the simplest and most commonly used methods of re-

moving the forced signal, both give large biases in the

estimated amplitude of the variability, with detrending

also causing large biases in the estimated phase. Dif-

ferencing gives a better estimate of the phase during the

earlier part of the time series, when GHG forcing is less

important, but biases increase as GHG forcing becomes

dominant. The scaling methods give more accurate es-

timates of the amplitude, although with one scaling

factor there is a small overestimation of the amplitude

because of the inability of the method to account for

different models having different sensitivities to natural

forcing. The two factor scaling method appears to ac-

curately estimate the amplitude, but there are errors in

the estimated phase resulting from not removing the

portion of the signal because of forcings other than

GHG and natural forcing (e.g., aerosols and ozone).

Including this missing forcing as a third scaling param-

eter improves the estimate of the phase but leads to an

underestimation of the amplitude resulting from mis-

attribution of the internal variability as naturally forced

variability (since they occur on the same time scales).

We note that our results provide what are presumably

generous estimates of the accuracy of the scaling

methods since the forced time series were constructed

with the same MMMs that were then used to estimate

the scaling factors. When applying these methods to

more complex data we must be aware that the MMMs

themselves are only estimates of the underlying struc-

ture of the time series. The difference between the

MMM calculated from the model ensemble and the

true forced signal of each model will likely introduce

additional errors.

5. Application to CMIP5 simulations

We now apply the five different methods to the

CMIP5 simulation results. In this case we do not know

the underlying internal variability; however, we can

compare the results of the five methods to the CMIP5

control runs, where external forcing is constant. We also

do not know the underlying shape of themodel response

to the external forcing; we estimate it by theMMM from

the GHG and natural forcing runs (whereas in the syn-

thetic cases it was the MMMs by construction). We are

thus implicitly assuming that the timing and relative

amplitudes of the model responses are constant across

the models (which is not necessarily true—e.g., some

models may have a larger response to one type of nat-

ural forcing than another).

The mean and standard deviation of the CMIP5

NASSTI are shown in Fig. 5a in gray, along with the

mean and standard deviations of the AMO indices after

the various methods to remove the forced signal have

been applied. The results are very similar to the syn-

thetic data. Figure 5b shows the distribution of turning

points for the CMIP5 data, and once again the results

correspond closely to the synthetic data. In the raw time

series the maxima and minima line up with the maxima

and minima of the MMM (shown by the black triangles

on the x axis). This bias is not improved by detrending

(dark blue). The differencing method and single scaling

methods both result in a reasonably even distribution of

turning points, apart from the edge effects of the filter.

The two factor scaling method, however, shows prefer-

ences for maxima around 1880 and 1940 and for minima

around 1920 and 1970. The first and last of these peaks

may be partially influenced by edge effects, but in the

middle of the time series there is still clearly some bias in

the phase related to turning points of MMMrest (ma-

genta triangles). The three factor scaling method, which

does attempt to take the residual external forcing into

account, also shows a uniform distribution of turning

points. In reality the distribution of turning points of the

AMOI may be nonuniform as a result of excitation of

the variability by external forcings (Otterå et al. 2010;

Zanchettin et al. 2012; Iwi et al. 2012; Menary and Scaife

2014). However, we see no evidence for that here; the

lack of a common response across models may simply be
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due to the different amplitudes, periods, and even

mechanisms underlying North Atlantic climate vari-

ability in each model.

The distribution of amplitudes estimated by the vari-

ous methods also follows the results found for the syn-

thetic time series. In this case we also compare the

amplitudes of internal variability estimated from the

historical simulations to the amplitudes found in 145-yr-

long sections of the control runs, where there is no

variability in the external forcing (although note that

control runs were not available for all models and that

the amplitudes of variability from the control runs may

be biased slightly high by slow drifts that can remain as

a result of incomplete model spinup). The detrended,

differenced, and, albeit to a lesser extent, single scale

factor methods overestimate the amplitude of the internal

variability while the three scale factor method underes-

timates it. The two scale factor method appears to give

the best estimates of amplitude, as in the case of the

synthetic data. Testing using a two-sided Kolmogorov–

Smirnov test shows that the distribution of standard de-

viations from the control runs is not significantly different

at the 99% level from the distributions calculated using

the single scale factor and two scale factor methods.

Next we examine the scaling factors that are obtained

from the regression of the CMIP5 NASSTI onto the

various MMMs. These scaling factors indicate the sen-

sitivity of each model to the various external forcings

relative to the ensemble mean. For comparison we also

calculate scaling factors for the observed NASSTI.

Figure 6 shows the scaling factors for the single factor

scaling method (Fig. 6a) and the three factor scaling

FIG. 5. (a) Time series of mean (solid) and one standard deviation either side of the mean

(dashed) for the NASSTI time series (gray) and AMOI time series (colors). (b) Distribution of

maxima (solid) andminima (dashed) as a function of time, with triangles on the x axis indicating

minima and maxima of the MMMs as in Fig. 1. (c) Distribution of standard deviations of the

amplitude of the NASSTI and AMOI. Dashed vertical lines indicate mean of the distributions

while solid vertical lines indicate the standard deviation of the observed NASSTI (gray) and

AMOI (colors). These may be compared to 145-yr-long sections of the control runs (black).
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method (Fig. 6b), along with the corresponding values

for observations (dashed lines). We can see that there

is a correlation between the scaling from the single

factor scaling method and the GHG scaling factor from

the three factor scaling method (red and blue asterisks

in Fig. 6b), indicating that GHG sensitivity dominates

the single factor scaling, as was the case with the syn-

thetic data. Another estimate of the natural and GHG

FIG. 6. (a) Regression (scaling) factors for the single factor scaling method for the all-forcing

runs (blue) from CMIP5. Also included are the scaling factors obtained when scaling the

natural forcing runs with MMMNat (green) and the GHG forcing runs with MMMGHG (red),

where those runs are available. (b) Scaling factors obtained using the three factor scaling

method. Individual runs are plotted with shapes, and means for each model ensemble are

shown with the asterisks. Horizontal dashed lines indicate the values obtained when applying

the same scaling methods to the observed NASSTI. The blue asterisks from (a) are repeated in

(b) for comparison.
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sensitivities can be made by regressing MMMNat and

MMMGHG on to each model’s natural only and GHG-

only forcing runs. These estimates are shown in Fig. 6a.

There is, however, little or no correlation between the

GHG scaling factor from the three factor scaling

method and the GHG scaling factor obtained directly

from the GHG-only forcing runs (cf. red asterisks in

Figs. 6a,b; also Fig. 8a). Note that the GHG scaling

factor from the three factor scaling method is less than

unity for most ensemble members, indicating that the

estimates of GHG sensitivity obtained from the all-

forcing runs are generally lower than the estimates

obtained from the GHG-only runs. This systematic dif-

ference is due to the all-forcing scenarios containing

forcings, such as anthropogenic aerosols, that are not

included in the GHG-only runs but that have time series

with a significant projection onto MMMGHG (Andreae

et al. 2005). Anthropogenic aerosols act to partially

offset GHG-induced warming, and thus the runs that

include aerosol forcing will have a lower sensitivity since

dGHG now represents sensitivity to GHGs combined

with other forcings rather than the sensitivity to just

GHGs alone.

As an illustration of the impact of the missing forcings

on the estimates of the sensitivity parameters, Fig. 7

compares different estimates of the forced signal for one

particular ensemble member from the GFDL CM3

model (Griffies et al. 2011). This model shows large

sensitivities to both GHG and natural forcing when

those sensitivities are estimated from theGHG-only and

natural-forcing-only runs; however, an estimate for the

forced time series made using those individual in-

dependent forcing sensitivities (magenta line in Fig. 7) is

not a good fit for the modeled NASSTI (blue line). The

three factor scaling method (in black) using the sensi-

tivities from the all-forcing run provides amuch closer fit

using a lower estimate of the GHG sensitivity since that

sensitivity is now no longer to GHG alone but includes

other forcings that project significantly onto MMMGHG.

Other models show similar results (Fig. 8a).

The natural forcing scaling factor agrees better with

the value obtained from the natural forcing runs (green

asterisks in Figs. 6a,b; also Fig. 8b). There is a wider

spread in the estimated values of the natural scaling

factor compared to the estimates of the GHG scaling

factor, with some models even having negative values

(i.e., the opposite response to the forcing than the

MMM). Part of this spread is due to the inaccuracy of

the method since we know from the synthetic data that

there can be larger errors in estimating the natural

scaling factor than the GHG scaling factor (see Fig. 2).

Similarly, the scaling factors for the forced variability

unaccounted for by natural and GHG forcing (magenta

stars in Fig. 6) show a wide range, with some models

giving negative values.

There is no correlation between themodels’ estimated

sensitivity to GHG and their estimated sensitivity to

natural forcings (Fig. 9), which justifies the choice of

independent scaling parameters for the synthetic time

series in section 4. This lack of correlation also highlights

the limitations of the single scaling method, which uses

the same scaling factor to account for both GHG and

naturally forced responses. The fact that the single

scaling method still provides good estimates of both

phase and amplitude is due to the dominance of the

GHG forcing over the natural forcing.

6. Application to observations

We have also applied the five different methods to the

observed NASSTI, from 1870 to 2005, as shown in

Fig. 10 (with the scaling factors used shown in Fig. 6).

The largest differences between the various AMOI es-

timates occur toward the end of the record, with a spread

of 11 years in the estimated timing of the most recent

minimum (1976 for the raw NASSTI time series, 1978

FIG. 7. Estimate of the forced signal from one ensemble member from the GFDL CM3

model, showing the impact of missing forcing factors. The modeled NASSTI is shown in blue.

Also shown are two estimates of the forced signal, one using the three factor scaling method

(black) and the other using scaling from the GHG-only and natural-forcing-only runs

(magenta).
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for the detrended time series, and 1987 for the three

factor scaling time series, with the others in between).

This in turn affects the estimated time of the predicted

future maximum. The timing of the AMO (and other

low-frequency modes of variability to which these

methods may be applied) is important in ascertaining

the role that the various modes of internal variability

may be playing in the current and near-term future

climate—for example, their relative contributions to the

recent hiatus in the global-mean surface temperature

increase.

Note that when applying the scaling methods to the

observations we still use the MMMs from the models.

Since the CMIP5 all-forcing, GHG, and natural forcing

runs extend only until 2005 it is not possible to extend

the time series in Fig. 10 without making further as-

sumptions (e.g., persistence of the mean or trend; see

Steinman et al. 2015). Also note that the phase is esti-

mated using smoothed time series, so edge effects may

be important. This means that estimates near the end of

the time series may change as additional data become

available.

FIG. 8. Scatterplots of (a) scaling factors for GHG obtained from the GHG-only run com-

pared to those obtained from the all-forcing run using the three factor scaling method and

(b) scaling factors for natural forcings obtained from the natural-forcing-only run compared

to those obtained from the all-forcing run using the three factor scaling method. The scaling

factors are averaged over the ensemble for models where more than one ensemble member

was available.

15 OCTOBER 2015 FRANKCOMBE ET AL . 8197



Comparing the scaling factors obtained from obser-

vations (dashed lines in Fig. 6 and black square in Fig. 9)

to those from the models, we can see that the observed

GHG, natural, and residual scaling factors are all within

the range simulated by the CMIP5 models.

Comparing the estimated amplitudes of the observa-

tions to the estimates from the models, we can see in

Fig. 5 that for the three factor scaling method the

observations have an amplitude greater than about 95%

of the model ensemble members, suggesting that many

of the models may not be simulating multidecadal var-

iability of large enough amplitude in the North Atlantic.

There is also the possibility of underestimation of the

amplitude (in both the CMIP5 results and observations)

using this method. It is already known, however, that

models tend to underestimate decadal variability in the

FIG. 9. Scatterplots of scaling factors (a) for GHG compared to scaling factors for natural

forcings obtained from the all-forcing runs using the three factor scaling method and (b) from

the GHG-only and natural-forcing-only runs (for those models where data is available). The

scaling factors are averaged over the ensemble for models where more than one ensemble

member was available. The scaling factors for observations are plotted in (a) as a black square.
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Pacific (e.g., England et al. 2014); perhaps this is a

problem that also applies to decadal modes of variability

in other ocean basins.

7. Main sources of error in the methods to estimate
the forced signal

a. MMM shape

One major difference between the synthetic time se-

ries analyzed in section 4 and the CMIP5 models ana-

lyzed in section 5 is that for the synthetic time series the

MMMs were known exactly because they were used in

the construction of the time series. For the CMIP5

models, each different model will have a slightly dif-

ferent ensemble mean, and while the differences

between these ensemble means and the MMM (con-

structed using all the models) are minimized using the

scaling, they are not completely removed. Figure 11

shows ensemble means from the natural-forcing-only

runs for five models (each of which has five or more

ensemble members). Comparing the ensemble means to

theMMM(in black) and taking into account the noise of

each ensemble mean resulting from the smaller size of

the ensembles compared to the multimodel mean, we

can see that each of the models has a slightly different

forced response. Part of this may be due to differing

sensitivity of the models to different components of the

natural forcing or to different timing of the response in

different models. In addition there is also the fact that

different models may include different forcings or even

the same forcings but implemented in different ways.

For example, models with interactive atmospheric

chemistry may simulate a volcanic eruption by directly

adding aerosols to their atmospheres, whereas another

model with a simpler atmosphere might simulate the

same eruption by varying incoming radiation. These

model differences will have an effect on the model re-

sponses. In addition, there are fewer ensemble members

available for the GHG and natural forcing runs than for

the all-forcing runs, making MMMGHG and MMMNat

less robust estimates than MMMall.

FIG. 10. ObservedAMO indices calculated using the five differentmethods (colors) as well as

the raw NASSTI (gray). Dotted (solid) lines indicate the raw (40-yr smoothed) time series.

Upward (downward) pointing triangles along the x axis mark the position of maxima (minima)

of the smoothed time series.

FIG. 11. MMM (black) and single model means (colors) for five different models forced with

natural forcing only (chosen because each model had five or more ensemble members). The

number of ensemble members included in each mean is shown in parentheses in the legend.
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The same problems apply when using the MMMs to

estimate the internal variability from observations (as in

section 6), since we are assuming that the model MMMs

adequately represent the true forced climate signal.

b. Missing forcing factors

Another factor worth considering more closely is the

missing forcing types. Since we have GHG-only and

natural-forcing-only runs available we have been able to

attempt to account for these forcing types, but there are

other forcings that may be important as well. Anthropo-

genic aerosols and ozone are of particular interest because

they vary on time scales of the same order as the internal

variability in which we are interested. Not taking a forcing

into account leads to a spread in the estimated amplitude

of the internal variability since, depending on the timing

of the missing forcing, it may be either amplifying or

canceling out the internal variability. This can be seen in

Fig. 4e, where using only two scaling factors cannot ac-

count for the influence of the residual forcing given by

arest. Including many different types of forcing leads to

other problems, however, since time series may end up

being overfitted, such that the true internal variability is

mistaken as the forcing signal (as in Fig. 4f, where there is

no problemwith overestimation when arest is included but

there is some underestimation).

Missing forcing factors are also responsible for the

difference in estimating GHG scaling factors from the

GHG-only runs and the all-forcing runs (which contain

forcings that project onto the GHG forcing time series).

c. Assumption of linearity

Given enough computing power, both the above

problems can be tackled by having more ensemble

members and simulating more types and combinations

of external forcings. However, a fundamental issue with

all the methods described here is that we have assumed

that the various forced signals and the internal vari-

ability can simply be combined linearly. Linearity was

ensured by construction for the synthetic time series

discussed in section 4. For the CMIP5 models this is not

expected to introduce large errors since Schurer et al.

(2013) found that the assumption of linearity held over

the last millennium.

In addition, external forcing may have the ability to

excite internal variability. However, we have not seen

any evidence of this in our results (i.e., a bias toward a

particular phase that cannot be explained by the limi-

tations of the various methods).

d. Possibilities for improvement

Asmentioned above, some of the challenges that arise

in using the scaling method can be reduced using greater

computing power. Having more ensemble members

would provide more robust estimates of the various

MMMs, and performing simulations for various forcings

separately would allow more forcings to be included,

although it would also increase the possibility of mis-

attribution. Having more ensemble members for indi-

vidual models would also allow individual model

ensemble means to be used instead ofMMMs, removing

one potential source of error. Comparing to observa-

tions remains error prone, however, because of the

necessary but imperfect assumption that the MMMs are

applicable to the real world.

As for extending the methods into future projections,

the different climate sensitivities mean that the different

model trajectories diverge rather quickly as GHG forcing

increases. Small errors in the estimated sensitivities at the

end of the historical run quickly become overwhelming

and make the estimates of internal variability in model

forecasts increasingly unreliable. In addition, while the

differencing and single scaling methods can be extended

using RCP simulations, the two and three factor scaling

methods rely on the HistGHG and HistNat runs, which are

available only until 2005.

8. Conclusions

The aim of this study was to assess the performance of

methods for separating internal and forced variability

of the climate, with application to North Atlantic sea

surface temperatures. We have tried five methods:

detrending, differencing, and three different scaling

methods. Detrending, which is very commonly used in

an attempt to remove the anthropogenic signal, leads to

large overestimations of the amplitude of internal vari-

ability as well as large biases in the estimated phase of

the variability, which can in turn bias the estimated pe-

riod. Similarly, differencing (i.e., taking the difference

between the observed climate and an estimate of the

forced signal given by the multimodel mean from

CMIP5) is not an ideal method. It gives a less biased

estimate of the phase than simply detrending but still

overestimates the amplitude of the variability because of

different climate sensitivities of the different models.

Scaling the MMM responses to various types of forc-

ing improves the estimates of the forced signal; however,

care must be taken to include all the relevant forcings.

Assuming that the models will have the same sensitivity

to GHG and natural forcing (by using the MMMall as in

the single scaling method) improves the estimates of the

phase and amplitude of the internal variability, although

there can still be errors for models that have large sen-

sitivity to GHG forcing and low sensitivity to natural

forcing, or vice versa (Figs. 4c,d). The single scaling
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method does, however, represent a significant improve-

ment over the detrending or differencing methods.When

GHG and natural forcings are scaled separately but the

residual forcing is not included (as in the two factor

scaling method) there can be either under- or over-

estimation of the amplitude of internal variability as well

as a bias of the estimated phases toward the phase of the

residual forced signal. Including the residual forcing (as in

the three factor scaling method) improves the estimate of

the phase but leads to a tendency toward underestimation

of the amplitude. All the scaling methods suffer to vary-

ing extents from misattribution of the internal variability

as the forced signal, which leads to underestimation of the

amplitude when the phases of internal variability line up

with the phases of the forced signal. The underestimation

increases as more factors are included in the scaling. In

addition, the scaling methods are subject to limitations,

such as those due to the imperfect estimations of the

various MMMs, variability due to missing forcings, and

the assumption that the various forcings combine line-

arly. Despite these limitations, however, the scaling

methods perform significantly better than detrending or

differencing the time series. It is recommended that such

scaling methods be used in preference to detrending or

differencing in studies of low-frequency internal vari-

ability of the climate system.

Applying the five methods to observations suggests

that many models may underestimate the amplitude of

internal variability in the North Atlantic (with the ca-

veat that the methods applied to both models and ob-

servations are prone to underestimation). The different

methods lead to different results for the timing of the

last minimum in the observed AMO index and thus

different predictions for the recent/future maximum.

These disparate predictions highlight the importance of

being able to correctly distinguish between the exter-

nally forced signal and internal variability.
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