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Abstract Climate model ensembles are used to estimate

uncertainty in future projections, typically by interpreting

the ensemble distribution for a particular variable proba-

bilistically. There are, however, different ways to produce

climate model ensembles that yield different results, and

therefore different probabilities for a future change in a

variable. Perhaps equally importantly, there are different

approaches to interpreting the ensemble distribution that

lead to different conclusions. Here we use a reduced-res-

olution climate system model to compare three common

ways to generate ensembles: initial conditions perturbation,

physical parameter perturbation, and structural changes.

Despite these three approaches conceptually representing

very different categories of uncertainty within a modelling

system, when comparing simulations to observations of

surface air temperature they can be very difficult to sepa-

rate. Using the twentieth century CMIP5 ensemble for

comparison, we show that initial conditions ensembles, in

theory representing internal variability, significantly

underestimate observed variance. Structural ensembles,

perhaps less surprisingly, exhibit over-dispersion in simu-

lated variance. We argue that future climate model

ensembles may need to include parameter or structural

perturbation members in addition to perturbed initial con-

ditions members to ensure that they sample uncertainty due

to internal variability more completely. We note that where

ensembles are over- or under-dispersive, such as for the

CMIP5 ensemble, estimates of uncertainty need to be

treated with care.

Keywords Climate model ensembles � Ensemble

generation � Ensemble uncertainty

1 Introduction

The probabilistic interpretation of climate model ensemble

distributions is well established (Meehl et al. 2007; Tebaldi

and Knutti 2007; Knutti et al 2010). However, there has

been surprisingly little discussion about how best to gen-

erate an appropriate ensemble, which metrics might define

an appropriate ensemble, or indeed what ensemble spread

actually represents (Knutti et al. 2010). Climate model

ensembles can be created in several ways, including by

perturbing initial conditions (e.g. Phipps et al. 2013), per-

turbing model parameters (e.g. Murphy et al. 2004) or by

using multiple model structures (i.e. a multi-model

ensemble). The ensembles in the Coupled Model Inter-

comparison Project (CMIP) are typically referred to as

‘‘ensembles of opportunity’’ (e.g. Tebaldi and Knutti 2007;

Annan and Hargreaves 2010). These are created by inviting

modelling groups to submit model simulations, and then

combining them under the implicit assumption that they

provide a meaningful and appropriate representation of

uncertainty. While the experiments run by CMIP have been

strategically designed, contributions are dictated largely by

the number of participating groups and the capacities of

each group. Some may submit a single simulation, others

an entire ensemble, while larger groups may submit several

ensembles using different variants of their model. These

ensembles are used collectively by researchers and the

Intergovernmental Panel on Climate Change (IPCC) to

assess how well climate models capture observed climate

(Randall et al 2007) and how the climate may change in

the future (Solomon et al 2007). This is typically done by
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considering all simulations with equal weight. It is there-

fore of considerable importance that we understand the

extent to which spread in ensembles such as CMIP3 and

CMIP5 is representative of internal climate system vari-

ability, and the extent to which it relates to the uncertainty

in creating models of the climate system.

A key step in deciding on appropriate ensemble gener-

ation techniques is an explicit acknowledgement of the

ensemble interpretation paradigm upon which any analysis

will be based. By this, we mean the assumptions regarding:

(i) the relationship between observed values and the multi-

model mean, and (ii) the meaning of the ensemble spread.

This is an essential step in distinguishing between internal

system variability and model uncertainty within the

ensemble. To date, we are aware of three paradigms, all of

which are mutually conceptually incompatible:

The Truth-plus-error paradigm (Knutti et al 2010):

Suggests that the discrepancy between a model—at least

one without significant biases—and observations is essen-

tially noisy. The multi-model mean averages out the

‘noise’ from different models, such that if we had enough

very good models, the discrepancy between observations

and the multi-model mean should be very small. Model

error is essentially viewed as a random variable.

The indistinguishable paradigm (Annan and Hargreaves

2010): Suggests that analyses should view models and

observations as draws from the same distribution, where

this distribution represents our uncertainty in creating an

appropriate model structure.

The replicate Earth paradigm (Bishop and Abramowitz

2013): Suggests that chaotic aspects of the climate system

mean that it is only partly predictable, with the range of

possible climate states given particular set of forcings or

initial conditions defining a distribution of ‘‘true’’ climate

behaviour. Samples from this imagined distribution are

‘‘Earth replicates’’. Our observational record is a replicate

Earth in this sense, and models are viewed as imperfect

attempts to create replicate Earths. The concept behind the

replicate Earth paradigm is already implicitly accepted in

the idea of unpredictable ‘‘internal variability’’ (Knutti

et al. 2010; Macadam et al. 2010), although this is usually

spoken about within a modelling context, rather than as a

property of the natural system.

Note that the indistinguishable paradigm makes the

assumption that models and observations are draws from the

same distribution, whereas the replicate Earth paradigm

suggests that a perfect model—or replicate Earth—would be

drawn from the same distribution as observations, empha-

sising that CMIP models are not replicate Earth-like (see

Bishop and Abramowitz 2013). All three paradigms predict

that the multi-model mean should provide the best naı̈ve

estimate of observations, although for different reasons.

While we subscribe to the replicate Earth paradigm in our

discussion and analysis below, our results are equally

applicable to the indistinguishable paradigm. In particular,

we focus on the question of whether observations and

ensemble values of surface air temperature are drawn from

the same distribution. We therefore build on recent analyses

of the CMIP3 ensemble using similar metrics (Annan and

Hargreaves 2010; Bishop and Abramowitz 2013), which

showed that some variables display a spread in the model

ensemble that exceeds the spread in observational data sets

(that is, the ensemble is over-dispersive), while others dis-

play a spread that is slightly narrower than observational

ranges (that is, the ensemble is under-dispersive).

We explore the properties of ensembles generated using

three common techniques: an initial conditions ensemble, a

perturbed parameters ensemble, and a perturbed structure

ensemble. The latter is intended to represent a simplified

multi-model ensemble. We include a 122-member CMIP5

Historical ensemble in our analyses for comparison, noting

that despite the different types of uncertainty sampled by

CMIP5, all simulations are typically considered to be

comparable statistically. We analyse the variance of these

ensembles to show that the different generation techniques

produce ensembles with vastly different results.

2 Methodology

2.1 Observed data and modelling strategy

We use HadCRUT3 (Brohan et al 2006) observational

surface air temperature data from 1971 to 2010. All model

simulations, including those from CMIP5, were re-gridded

to the HadCRUT3 5� 9 5� grid, using area weighted aver-

aging. Only grid cells with more than 80 % of HadCRUT3

anomaly data in the period 1971–2010 were included in the

analysis.

We use the CSIRO Mk3L climate system model version

1.2 (Phipps et al 2011, 2012, 2013) to generate three types

of ensemble, each comprising 20–25 members and cover-

ing the period 1971–2010. CSIRO Mk3L is a fully-coupled

general circulation model, incorporating components

which describe the atmosphere, land surface, sea ice and

ocean. The atmospheric component has a horizontal reso-

lution of 5.6� 9 3.2� with 18 vertical levels, while the

oceanic component has a horizontal resolution of

2.8� 9 1.6� with 21 vertical levels. Although CSIRO

Mk3L is primarily designed for millennial-scale climate

simulation, it also performs well on shorter time scales,

including the twentieth century (Phipps et al. 2012). The

computational efficiency of the model allows it to be used

here to generate multiple ensembles.

All ensemble members were integrated over the period

1851–2010, following the CMIP5 protocol for the
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Historical experiment. The model was driven with the

prescribed changes in orbital parameters, atmospheric

greenhouse gas concentrations, solar irradiance and

stratospheric sulphate aerosols due to volcanic eruptions.

The analysis period (1971–2010) allows us to make the

optimal use of observational data for the purposes of

evaluating each ensemble member. All simulations were

based on the default configuration of CSIRO Mk3L (Phipps

2010), with the members of each ensemble being perturbed

relative to that baseline.

2.2 Ensemble generation

To generate the initial conditions ensemble, restart files

spaced at intervals of 100 model years (sourced from the

control simulation used by Phipps et al. 2013), were used

to initialise the model.

To generate the perturbed parameters ensemble, six

model parameters representing different properties of the

land, ocean and atmosphere were selected with the aim of

maximising behavioural diversity. In each case, a litera-

ture-based scaling factor or value range was chosen and

values were sampled within these ranges. They are listed

below:

1. Land surface albedo strongly affects the absorption of

solar radiation by the land surface and therefore land

surface temperature. This parameter was varied by

Fischer et al. (2010). We used scaling factors with a

range of 0.5–1.5.

2. The aerodynamic roughness length affects surface

wind speed, as well as the efficiency of turbulent

energy fluxes between the surface and the atmosphere.

This parameter was perturbed by Fischer et al. (2010)

and by Murphy et al. (2004). We used scaling factors

with a range of 0.5–1.5.

3. Soil field capacity limits soil moisture, which affects

evaporation and can have a significant impact on

global temperatures (Ducharne and Laval 2000). We

used scaling factors with a range of 0.9–1.5.

4. Ocean diffusivity controls the rate of heat diffusion

within the ocean and was previously examined by

Washington and Meehl (1989). We perturbed this

parameter within a range of 400–800 m2s-1.

5. The critical relative humidity threshold for cloud

formation (RHcrit) defines the humidity level above

which clouds appear in the model. It has been used in

large perturbed parameter ensembles, such as Murphy

et al. (2004). We used a range of 0.65–0.75 for RHcrit

over land, and 0.75–0.95 for RHcrit over the ocean,

varied together.

6. The cloud albedo reduction factor accounts for the

texture of clouds at the sub-grid level. We used values

in the range 0.495–0.695 for convective cloud, and

0.765–0.965 for non-convective cloud, varied together.

Ideally, the generation of the perturbed structure

ensemble should involve the comparison of single model

simulations from multiple climate models, each using

comparable initial conditions and perturbed parameters.

Given that this would require coordination and commit-

ment on the scale of a CMIP experiment, we instead

constructed a structural perturbation ensemble using

CSIRO Mk3L by selectively enabling or disabling indi-

vidual model components, as described by Phipps (2010).

1. We varied the sea ice model, which has four states: no

ice thermodynamics or dynamics, ice thermodynamics

only, ice thermodynamics with leads, and full ice

thermodynamics and dynamics.

2. We also varied between two alternative schemes for

each of the following: atmospheric boundary layer,

gravity wave drag, cumuliform cloud formation,

stratiform cloud formation, the land surface, and the

oceanic equation of state.

Although the relationship between model simulations

produced in this way and a true multi-model ensemble is

not entirely clear, we should still expect to see more

behavioural diversity than in the perturbed parameters

ensemble. The experiment used several combinations of

each of these options, including the default (all on), default

with each option changed individually (9 simulations), and

a further 15 simulations with pseudo-random sampling of

model structure. We note that 5 simulations became

numerically unstable and failed to complete. These are

omitted from further analysis.

To generate members of the perturbed parameters and

perturbed structure ensembles, a low-discrepancy

sequence, the Sobol’ sequence (Reichert et al. 2002), was

used to sample values from a uniform distribution over the

intervals described above. This involved calculating an m-

dimensional (here m = 6—the number of parameters)

Sobol’ sequence, of length n (the number of samples—

simulations—we wanted to generate). The elements in the

Sobol’ sequence are m-dimensional vectors, sn, with each

component a quasi-random value between 0 and 1. We can

then take each of these samples, and map each component

to the interval required for each model parameter—i.e. we

take the first element to correspond to the ocean diffusivity

values, which we want to map to [400, 800], and then we

use ocean diffusivity = (800 - 400) 9 sn,k ? 400. For the

perturbed structure ensemble, a discretised version of this

process is used: real-valued samples were generated using

the Sobol’ sequence, in the space (0,1)m, and then each

interval was split into pi intervals, where pi = number of

states in dimension i. The 7-dimensional Sobol’ sequences
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is then mapped from (0, 1)7 ? {0, 1, 2, 3} 9 {0, 1}6 (4

sea-ice model switch states, 2 for each other structural

switch). For example:

ð0:83;0:23;0:35;0:58;0:92;0:29;0:61Þ ! ð3;0;0;1;1;0;1Þ

is equivalent to: sea ice with full ice thermodynamics and

dynamics; alternative version of atmospheric boundary

layer scheme; alternative version of land surface scheme;

default version of stratiform cloud scheme; default version

of cumuliform cloud scheme; alternative version of oceanic

equation of state; default version of gravity wave drag

scheme.

Ensembles were analysed first using raw output and then

using output corrected for any bias in the global mean. Cost

functions of surface air temperature were calculated over

all grid cells for which HadCRUT3 had C80 % data cov-

erage for the period 1971–2010. In addition to the three

ensembles generated here, analyses were also performed on

122 simulations from the CMIP5 Historical ensemble

(WCRP 2013; Pirani 2008) for comparison. For this col-

lection of CMIP5 models, the ensemble only extends to

2004, and so we only use the data from 1971 to 2004.

2.3 Analysis metrics

The analysis metrics we investigate include rank histo-

grams (Hamill 2001; Annan and Hargreaves 2010), and a

new approach—observation error curves—motivated and

explained in more detail after initial results are described

below. Both are tools to assess whether observations are

drawn from the same distribution as ensemble members.

Rank histograms compare the observations to the ensem-

bles by calculating the rank of the observations relative to

the models at each point in time and space. For example, if

the observed value for a particular grid point and time-step

is higher than that for all the models, it will be ranked

(n ? 1)th, where n is the number of models. If the obser-

vations and ensemble data are drawn from the same dis-

tribution, the distribution of ranks should be approximately

uniform, as the observations have an equally likely chance

of lying at any given rank, for any given data point. If the

ensemble is over-dispersive (i.e. the spread in the model

ensemble is greater than that in the observational data set)

then the distribution will be higher in the middle of the

range, as the observations are less likely to fall in the

extreme high or low ranks. On the other hand, if the

ensemble is under-dispersive, the distribution will be

U-shaped, as the observations fall outside the model range

more often. Note that this would not be true with strongly

biased data: if the ensemble contained a significant bias, we

would expect to see the observations rank consistently high

or low. As we are using bias corrected data, we should

expect that the ranks are relatively symmetrically distrib-

uted over the interval—that is, the integral of the density

function over the lower half of the ranks should be

approximately equal to that over the upper half.

As well as applying rank histograms to actual values of

temperatures, we also apply them to the temperature trends

throughout 1971–2010. While a flat rank histogram of

actual temperatures gives an indication that ensemble

spread is a reasonable representation of system uncertainty,

an over-dispersive ensemble might indicate at least two

quite different possibilities. First, that the ensemble trend

broadly matches observations, but its spread is too large.

Second, that the ensemble trend is in the wrong direction,

regardless of ensemble width. It is this second possibility

that we aim to detect by constructing a histogram of trends.

More specifically, we first estimate the gradient of the least

squares fit to the temperature time series at each grid cell

for observations and all models within a given ensemble,

and then construct a rank histogram based on the values of

the gradient. Note that temperature time series are cor-

rected for any bias in the global mean, but are not corrected

for any bias in the trend. We would not therefore neces-

sarily expect classic U-shaped or humped histograms of

gradient values.

For reference, we also include more common measures

of performance, such as the probability density function

(PDF) overlap of Perkins et al. (2007), and compare this

with temporally sensitive measures such as root mean

square error (RMSE) and correlation, calculated over all

monthly time steps and 5� 9 5� grid cells. The bin width

used for the PDF overlap metric was 1 �C.

3 Results

The global annual average temperature for each model

ensemble is shown without bias correction in the top row of

Fig. 1. Each ensemble performs reasonably well and the

ensemble means follow a similar path, as expected given

that they share the same time evolution of external forc-

ings. Increasing concentrations of anthropogenic green-

house gases cause the overall warming trend, while

volcanic eruptions cause short-term cooling in the early

1980s (El Chichón, 1982) and early 1990s (Pinatubo,

1991).

There are, however, major differences between the

model ensembles. Figure 1 highlights the ensemble biases

and variance differences. The mean surface air temperature

bias (taken over all grid cells and time steps) for each

ensemble is also shown in the first column of Table 1. The

initial conditions ensemble mean shows a small positive

bias relative to the observations, and all individual mem-

bers are warmer than the observations. The perturbed
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parameters ensemble mean has a larger, negative bias, but

is less than 1K too cool, while the perturbed structure

ensemble mean is closer to the observations. The CMIP5

ensemble performs similarly to our ensembles, with only a

small bias in the ensemble mean.

The mean of the standard deviation of the models’

global temperature errors at each time step is given for the

raw data in columns 2 and 4 of Table 1. This is calculated

by taking the standard deviation across the ensemble at

each time-step and grid cell (for the per-cell calculation),

and then taking the mean of these standard deviation values

over time and space. In the global case, the standard

deviation of global temperature values is taken across the

ensemble for each time step, and then averaged over all
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Fig. 1 Global annual mean surface air temperatures (K) for each

model simulation. The columns represent the three generation

techniques, plus the CMIP5 ensemble. The first row shows the raw

model output, the second row shows bias corrected output (note

different y-axis scales). Thin black lines represent individual model

simulations, the mean is in red, and the observations are shown as a

thick black line

Table 1 Ensemble statistics for surface air temperature (SAT)

Ensemble Global time-mean

SAT (K)

Mean SD of

SAT (K)

Standard deviation

of a values

Global Per-cell Global Per-cell

Raw BC Raw BC

Initial conditions 292.6 0.099 0.095 0.783 0.782 1.759 2.591

Perturbed parameters 291.3 2.207 0.156 2.615 1.393 1.183 1.592

Perturbed structure 292.0 2.362 0.412 3.575 2.828 0.657 0.945

CMIP5 291.9 0.650 0.183 1.73 1.602 0.873 0.968

The first column shows the average global mean for each ensemble for the entire period. Columns two to five show the mean value of the

standard deviation taken across the ensemble at each data point, for both raw and bias corrected (BC) data, over the global and per-cell domains.

The last two columns show the standard deviations of a values per ensemble, for bias corrected data over the global and per-cell domain (see

explanation in text)
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time steps. The variance between the models in the initial

conditions ensemble is much lower than in both the per-

turbed parameters and perturbed structure ensembles. In

the latter ensembles, the spread of the individual simula-

tions is large, and each includes simulations that are both

positively and negatively biased. The variance in the per-

turbed structure ensemble is slightly larger than in the

perturbed parameters ensemble. The CMIP5 ensemble

variance is much higher than the initial conditions

ensemble, but much lower than our other ensembles.

We then bias correct individual model simulations by

removing the difference between the global time mean of

each simulation and the observations (shown in the bottom

row of Fig. 1). This process is standard practice in climate

change experiments (e.g. Solomon et al. 2007; Macadam

et al 2010). After bias correction the inter-model variance

(shown in columns 3 and 5 of Table 1) in the perturbed

parameters and perturbed structure ensembles is greatly

reduced. This suggests that much of the variance in the first

three non-bias-corrected ensembles stems from divergence

over the 120 years prior to the sample period. However,

even after bias correction, there is still more ensemble

variance in the perturbed parameter and perturbed structure

ensembles. The perturbed structure ensemble has by far the

greatest diversity of simulation behaviour, followed by the

perturbed parameters ensemble, with the initial conditions

ensemble having very little apparent behavioural diversity.

This shows that there is an increase in diversity of simu-

lation behaviour as the model is perturbed in increasingly

complex ways—initial conditions provide little diversity,

while structural changes provide the most. Bias correction

has less impact on the CMIP5 ensemble in the per-cell

case, perhaps due to model selection (whereby model

developers self-select model variants with the best perfor-

mance) during the development and submission process.

Table 2 shows the performance differences between

each ensemble using a range of common metrics. Results

for each metric are presented for both the ensemble mean

and the average of the metric across all ensemble members.

While we might anticipate that metrics that incorporate a

temporal signal on a monthly time scale (such as RMSE

and correlation) might randomly advantage those simula-

tions that have coincident internal variability with the real

world, Table 2 shows that in fact the performance rank of

these ensembles is the same in these metrics as in the

correlation-insensitive PDF overlap metric. These statistics

also reinforce the ability of the CSIRO Mk3L model. The

initial conditions ensemble members have on average

better RMSE, correlation, and PDF overlap with observa-

tions over time and space than the CMIP5 ensemble

members, both before and after bias-correction. The per-

turbed parameter and perturbed structure ensemble mem-

bers, on the other hand, perform worse on average than the

CMIP5 ensemble members under all metrics. In general, as

anticipated, the ensemble mean performs better than an

individual ensemble member, for each ensemble and each

metric.

Spread across each ensemble clearly varies widely. We

now focus on what we believe to be a key metric in

assessing whether ensemble spread should be used to rep-

resent uncertainty. We compare ensemble spread relative to

the spread in the observations, using rank histograms and

observation error curves, both for the per-cell data set

(718,560 data points for all time steps and grid cells), for the

global data set (480 time steps of global average tempera-

ture), and for per-cell trends (one value for each of the 1,497

grid cells with greater than 80 % data coverage).

Figure 2 shows the ranks of global and per-cell monthly

observed values, as well as linear trend gradients over time

within each cell, compared to the models in each ensemble.

It is clear that the initial conditions ensemble is under-

dispersive, underestimating the variance in the observa-

tions, as indicated by the U-shaped histogram for both the

global and per-cell cases. The perturbed parameter and

perturbed structure ensembles clearly overestimate the

variance in the observations in the per-cell case, as indi-

cated by the strong bell-shapes in the histograms, although

it seems regional diversity compensates somewhat in the

case of the perturbed parameters ensemble, as the rank

histogram for global mean temperatures is much flatter

than for per-cell temperatures. The CMIP5 ensemble

appears largely over dispersive in both cases; however,

there are distinct up-ticks at both ends of the per-cell his-

togram, perhaps indicating extreme hot and cold seasons in

some regions that are not captured by the spread of models,

or potentially indicating errors in the observational data.

The large asymmetry in the perturbed parameters

ensemble per-cell rank histogram indicates that the obser-

vations are ranking higher than the models more often than

should be expected, given bias corrected data. This may be

because the model means are based on a distribution that is

highly skewed relative to the observations—e.g. the mod-

els are too hot in the tropics, where variability is lower, or

too cold in more variable grid cells, such as polar regions.

Since the ranks are not dealing with actual values, the bias

correction does not guarantee a balance of high and low

ranks.

The histograms of trend gradients indicate even greater

differences in behaviour between the ensemble types. The

initial conditions ensemble is again highly under-disper-

sive, indicating that the temporal trends are too homoge-

neous across grid cells, and that there are not enough

extreme trends. The structural ensemble exhibits a large

bias toward low or negative trends (as indicated by the

large number of high-ranking observation trends), which is

likely largely due to the handful of simulations that have a
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low or negative global trend over the period. The histo-

grams for both the perturbed parameters ensemble and the

CMIP5 ensemble are quite flat, indicating reasonably good

performance of trends across the spatial domain. This is

notable for the perturbed parameter ensemble especially, as

there are clear major trends in the spin-up period

1851–1970 (not shown in Fig. 1, but all simulations in that

ensemble used the same initial conditions).

Another method of examining the over- or under-dis-

persion of the ensemble is to assume that the ensemble

Global, Initial Conditions Global, Parameters Global, Structure Global, CMIP5

Per Cell, Initial Conditions Per Cell, Parameters Per Cell, Structure Per Cell, CMIP5

Trends, Initial Conditions Trends, Parameters Trends, Structure Trends, CMIP5
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Fig. 2 Rank of observations relative to bias-corrected model simu-

lations in each ensemble. The columns represent the three generation

techniques, plus the CMIP5 ensemble. The histograms in the top

roware based on global monthly mean surface air temperatures, while

those in the middle row are based on per-cell data. The histograms in

the third row are based on the linear trend gradients in surface air

temperature at each grid cell. The grey lines indicate the expected

values for a perfectly uniform distribution. High observation ranks for

a particular metric indicate that the model ensemble more often

exhibits lower values for that metric. Likewise, a narrow distribution

for the observation ranks indicates that the model ensemble has a

wider distribution

Table 2 Simulation statistics per ensemble, calculated per-cell, for raw and bias corrected data

Ensemble RMSE Correlation PDF overlap

mmmean Mean mmmean Mean mmmean Mean

Raw Initial conditions 2.086 2.323 0.986 0.983 0.943 0.945

Perturbed parameters 2.403 3.569 0.985 0.976 0.947 0.847

Structural perturbations 2.590 4.878 0.980 0.956 0.936 0.858

CMIP5 1.687 2.636 0.991 0.979 0.960 0.935

BC Initial conditions 2.050 2.293 0.986 0.983 0.972 0.973

Perturbed parameters 2.205 2.819 0.985 0.976 0.927 0.926

Structural perturbations 2.577 4.297 0.980 0.956 0.919 0.882

CMIP5 1.672 2.552 0.991 0.979 0.971 0.947

Each statistic is calculated first for the multi-model mean, and then for the average of the statistic for each simulation in the ensemble. The three

statistics calculated are root mean squared error, correlation, and the PDF overlap score from Perkins et al. (2007)
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accurately represents the distribution of uncertainty, as per

the indistinguishable paradigm (Annan and Hargreaves

2010), and examine whether the observations are drawn

from this distribution. We let the observations be a linear

combination of the ensemble mean and the ensemble

standard deviation, scaled by a random variable, a, at each

grid-cell and time step:

obsi ¼ �xi þ airxi

where i indexes both the grid-cell and time step. Inverting

this equation, we obtain

ai ¼
ðobsi � �xiÞ

rxi

If the observations are drawn from the same distribution as

the ensemble, the distribution of the random variable

a should approximate the standard normal distribution

ðN ð0; 1ÞÞ. Note however that the distribution is not nec-

essarily zero-centred in the per-cell case, because bias

correction is performed globally. The variance of a is

inversely related to the over- or under-dispersion of the

ensemble, relative to the observations.

The standard deviation of a for each ensemble for global

and per-cell data is shown in the last two columns of

Table 1. This gives us a useful quantitative measure of

over- or under-dispersion based on continuous values

rather than rank, and shows that the initial conditions and

perturbed parameter ensembles are both under-dispersive

(ra [ 1), while the perturbed structure ensemble is over-

dispersive (ra \ 1), in both the global and per-cell cases.

The distribution of a for each ensemble is shown in Fig. 3.

We can see that both the perturbed structure ensemble and

the CMIP5 ensemble are over-dispersive, whereas the ini-

tial conditions and perturbed parameter ensemble both

appear to be under-dispersive, regardless of whether the

analysis is performed globally or per-cell. This result

appears to contradict the apparent over-dispersion dis-

played in the per-cell rank histogram of the perturbed

parameters ensemble (see Fig. 2). This discrepancy may be

due, for example, to a long tail of cold temperatures over

the globe being eliminated in the conversion from contin-

uous temperature data to ordinal ranks, or to ensembles not

being uniformly over- or under-dispersive everywhere. The

distributions of the observational trends confirm the find-

ings in the trend rank histograms—the initial conditions

ensemble is under-dispersive, and both the initial condi-

tions and structural ensembles have a large bias toward

lower trends, relative to the observations. This low bias in

Global, Initial Conditions Global, Parameters Global, Structure Global, CMIP5

Per cell, Initial Conditions Per cell, Parameters Per cell, Structure Per cell, CMIP5

Trends, Initial Conditions Trends, Parameters Trends, Structure Trends, CMIP5

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

−6 −3 0 3 6 −6 −3 0 3 6 −6 −3 0 3 6 −6 −3 0 3 6

Error scalar

D
en

si
ty

Fig. 3 Distributions of observations relative to the ensemble means

on a per-cell basis, normalised by the standard deviation of the

ensemble at each grid point and time-step. The rows and columns

correspond to the same domains as in Fig. 2. A standard normal

distribution ðN ð0; 1ÞÞ is shown in grey, for reference
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trends is also visible in the rank histogram equivalents for

these two ensembles.

4 Discussion

There are two key results here. Firstly, and most obviously,

the different ensemble generation techniques lead to very

different ensembles. Perturbed structure ensembles are

over dispersive and perturbed initial conditions ensembles

are highly under dispersive, at least for the modelling

system used in this study. If one were to naı̈vely use spread

from these ensembles to estimate uncertainty in the climate

system they would likely over and underestimate it,

respectively. The results for the perturbed parameters

ensemble are less certain, with seemingly contradictory

results for the per-cell rank histogram and observation error

distributions.

Our analysis of CMIP5 shows it to be over dispersive for

surface temperature, and this is supported by the analysis

conducted by Annan and Hargreaves (2010), which shows

that the CMIP3 ensemble is over-dispersive, both for sea

level pressure and surface air temperature. The reasons

why CMIP5 is not more over dispersive than our structural

ensemble, despite it being a multi-model ensemble, are not

immediately clear. The fact that CMIP5 is an ensemble that

is part perturbed structure, part perturbed parameter and

part perturbed initial condition should not change our

expectation of greater dispersiveness. The answer may at

least in part be due to model selection in the CMIP5 sub-

mission process, discussed below.

Second, while we acknowledge that different perturba-

tion approaches (initial conditions, parameter, structural

perturbation) target very different types of uncertainty in

the modelling system, these do not directly translate to the

climate system in a meaningful way. For example, initial

conditions ensembles aim to sample internal variability

within the modelling system (Phipps et al. 2013). Different

members aim to represent the spread of possible states of

the climate system, given that the initial conditions are only

imprecisely known, if at all. This is essentially the same as

attempting to generate replicate Earths, since if we had a

perfect model, replicate Earths might be generated by

sampling initial condition uncertainty. However, the under-

dispersion in the perturbed initial conditions ensemble

shown here clearly illustrates that it does not represent a

replicate Earth ensemble. Conversely, perturbed physical

parameter and perturbed structure ensembles are designed

to sample the uncertainty in our knowledge of real physical

systems. These also aim to sample uncertainty in the

approach taken to approximate those processes on spatial

scales larger than those on which the processes themselves

operate.

It could be argued that the separation of uncertainties in

initial conditions, model parameters and model structure,

while conceptually useful, might be hindering accurate

prediction. For example, consider the case where an under-

dispersive perturbed initial conditions ensemble is used to

determine the magnitude of future climate variability or

uncertainty in predictions. Our results provide good reason

to believe that this approach will lead to underestimates of

these sources of uncertainty. If, however, we can create an

ensemble that includes perturbed parameter and perturbed

structure members and that generates a flat rank histogram,

it is more likely to give reliable results, despite its apparent

mixing of uncertainty domains. We did not investigate

whether different parameter values or structures of the

model would lead to significantly different variances

resulting from perturbations to the initial conditions.

However, we have no reason to believe that this would

necessarily be the case. We suggest that, rather than per-

turbing ensembles using initial conditions, parameter

variations or structural variation in the hope that these lead

to appropriate estimation of uncertainty, researchers should

instead prove that variability generates flat rank histograms

before using that ensemble to estimate variability or

uncertainty in climate projections.

Our results apply only to surface air temperature and

only provide a basic estimation of ensemble spread. We

note that this study does not aim to explore ensemble

spread alone, but rather that our goal was to explore the

differences between ensembles generated by different

perturbation techniques. We have only examined surface

temperature here, because the surface temperature record is

the most reliable observational record for the last four

decades. While other variables may exhibit different

results, Yokohata et al. (2012; Fig. 1) indicate that at least

to a first approximation, ensembles that are over- or under-

dispersive for surface temperature are likely to be corre-

spondingly over- or under-dispersive for other variables.

The implications of our results for the CMIP ‘‘ensemble

of opportunity’’ approach, the most commonly-used

approach to assess uncertainty in future climate projec-

tions, are considerable. We have shown that even a limited

implementation of a perturbed structure approach within a

single model is sufficient to produce an over-dispersive

ensemble. It might therefore be expected that a true multi-

model ensemble approach, which would include a greater

diversity of model structures, would also generate over-

dispersive ensembles. However, this only applies strictly to

a multi-model ensemble with one simulation from each

model, and with no model selection. Model selection is

inherent in CMIP3 and CMIP5. While the CMIP ensembles

are constructed as an ‘‘ensemble of opportunity’’, the

ensemble members themselves are not entirely the product

of opportunity: modelling groups choose which simulations
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to submit, inevitably resulting in an ensemble of good

model simulations, each of which perform well individu-

ally. This may reduce the over-dispersion exhibited in the

ensembles. Nevertheless, Annan and Hargreaves (2010)

showed that the CMIP3 ensemble is over-dispersive, and

our results indicate the CMIP5 ensemble is over-dispersive

in surface air temperature, although this may not always be

the case (Oldenborgh et al 2013). Care should therefore be

taken when using variance as an uncertainty estimate from

these ensembles.

If our results are generalisable, initial conditions per-

turbation alone is likely not an adequate approach for

ensemble generation, if ensemble spread is to be used as an

estimate of uncertainty. This is only true under the replicate

Earth (Bishop and Abramowitz 2013) or indistinguishable

paradigms (Annan and Hargreaves 2010), where we expect

some variance about the mean, and where such variance in

the ensemble members should be statistically indistin-

guishable from that in the observations. Under the truth-

plus-error paradigm (Knutti et al 2010), the statement

makes no sense, as model-observation errors are assumed

to be independent, and as such there is no ‘‘internal vari-

ability’’ within the observations to speak of: if enough

models are included, errors will average out, and we will be

left with an accurate representation of the ‘‘truth’’, i.e. the

observations. We believe that this makes the truth-plus-

error paradigm unsupportable, and inconsistent with any

concept of ‘‘internal variability’’.

While we cannot definitively generalise this result to

other models, we see no reason why it should not apply

widely. The lack of analyses of ensemble variance within

climate model evaluation literature, for example using rank

histograms or something akin to observation error curves,

gives us no cause to discount this as a reasonable

assumption. We suggest that greater use of rank histograms

or observation error curves (e.g. Annan and Hargreaves

(2010; Bishop and Abramowitz 2013; Oldenborgh et al.

2013) would be valuable. We also note that there may be

reasons why CSIRO Mk3L’s internal variability might be

lower than other models—its relatively coarse spatial res-

olution for example. However, evaluation of the internal

climate variability simulated by CSIRO Mk3L on inter-

annual to interdecadal time scales indicates that its char-

acteristics are comparable both with reconstructions of past

climate and with that simulated by other models (Fernán-

dez-Donado et al. 2013; Phipps et al. 2013). We are not

aware of any a priori reason why a model that has a higher

resolution should necessarily exhibit greater behavioural

diversity under any particular physics parameterization, but

this issue does need to be explored in greater detail in the

future.

It is difficult to know how the results for our perturbed

parameters ensemble would compare with other perturbed

parameter ensemble experiments, as the combination of

parameters and their ranges are clearly specific to the

model in question. It is obviously possible to create a

perturbed parameter ensemble that is under-dispersive:

simply choose a set of parameters that are known to have

only small impacts, or only perturb the parameters over

small ranges. Conversely, it should be possible to create an

over-dispersive ensemble by choosing non-physical

parameter ranges. Yokohata et al. (2012) lists a number of

perturbed parameter experiments that show over- or under-

dispersive climate sensitivity relative to the CMIP3

ensemble. We did not seek to generate a particular type of

result, but rather to generate a perturbed parameter

ensemble with realistic, literature-driven perturbations. The

types of analyses we present could be valuable for exam-

ining the outcomes of the large perturbed parameters

ensemble experiments typically used for making projec-

tions—especially for defining reasonable default parameter

ranges, as changes in parameter ranges can be related to

changes in ensemble variance.

At the other end of the spectrum it is unlikely that the

perturbed structure ensemble presented here is represen-

tative of a true multi-model perturbed structure ensem-

ble—we have perturbed only a small sub-set of the

CSIRO Mk3L model structural components. While it is

true that many modern GCMs share components (at least

the theoretical background, if not the numerical imple-

mentation), these models have many more components

than the seven that we have perturbed here. None of the

CSIRO Mk3L model switches were indefensible—the

alternative schemes are all plausible representations of

aspects of the climate system. It would therefore seem

intuitive that a true multi-model perturbed structure

ensemble is likely to have broader spread than our per-

turbed structure ensemble does.

5 Conclusions

We have used a climate model, perturbed by initial con-

ditions, physical parameters and structural choices, to

generate ensembles of simulations. We have shown that

there are significant differences between ensembles gen-

erated in these different ways. In particular, perturbed

structure ensembles are likely to overestimate internal

climate variability. This is therefore likely to be the case as

well in true multi-model ensembles such as CMIP5, where

there is a larger diversity of model components within the

ensemble. In contrast, we have shown that ensembles

generated by perturbing initial conditions tend to have

excessively narrow spread, underestimating variability.

There appears to be no obvious reason to believe that this

conclusion would be significantly different for other
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models, despite known differences in models’ internal

variability.

If, therefore, we wish to create ensembles that are

unlikely to over or underestimate variability or uncertainty,

our results highlight that we may need to create ensembles

that are part initial conditions perturbation and part

parameter or structural perturbations. While these are tra-

ditionally very separate sources of uncertainty within a

modelling system, it appears that a careful blending of

perturbation approaches to achieve optimal dispersion may

be the best approach to generate reliable results. In shorter

term experiments, such as seasonal prediction, where

internal variability can be dominant, the nature of the

blending process may be different to longer term climate

prediction, where model structure and parameter values

might play a different role in ensemble dispersiveness.

While an analysis over an in-sample period is never

necessarily representative of how the system would per-

form in the future, we suggest that this approach applies

equally to ensembles of opportunity (such as the CMIP

ensembles) and grand ensembles (mixed initial conditions

and perturbed parameter ensembles, such as the cli-

matePrediction.net experiments, Stainforth et al. 2005) and

warrants further investigation. Perhaps the best that we can

hope for in the near term is the development of a sub-

sampling technique that might create smaller optimal

ensembles from the collection submitted to CMIP experi-

ments. A key step in this process, however, is an under-

standing of what is offered by each approach to ensemble

generation. Our results, by isolating the effects of different

ensemble generation techniques, contribute to the goal of

understanding how best to generate unbiased, well-dis-

tributed climate model ensembles.
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