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Abstract

Research has built extensive knowledge of most climate drivers and a detailed timeline of
the climatic changes that have occurred over the past millennium. However, many cause
and effect relationships are not yet robustly understood. Assessment of mean temperature
can dangerously mask extremes that have a profound impact on human society and the
natural environment. The daily temporal resolution required to assess climate extremes
has confined much previous research to the observational record. This research seeks to
understand the relationship between climate drivers (internal and external, natural and
anthropogenic) and temperature extremes in Australia over the last 1000 years.

Natural variability is a strong driver of temperature extremes in Australia. Cloudiness
relates to the variability of all extreme indices. El Niño Southern Oscillation is a strong
contributor to the variability of hottest days in Australia. Cloudiness, the Indian Ocean
Dipole and the Interdecadal Pacific Oscillation drive the variability of coldest days; which
exhibits almost no signal from external forcings.

Solar irradiance and volcanism act as a dynamic duo driving temperature extremes.
Across Australia volcanic eruptions cause large and abrupt cooling; although this cooling
is not necessarily proportional to the size of eruption. Solar forcing is found to have little
influence on temperature extremes but enhances (or reduces) and temporally extends (or
shortens) the impact of volcanic eruptions on temperature extremes.

The anthropogenic signal dominates during the industrial period, where Tmax indices
exhibit larger trends and are generally heavily influenced by external forcings. Tmin

indices on the other hand, either maintain complex relationships with external climate
drivers or are primarily forced by the internal climate variability.

The findings of this study indicate that the relative influences of external forcings and
natural variability differ for each index. Because of the influence of natural variability
and the potential for external forcings to amplify and dampen each other, the response
to a specific external forcing is not necessarily proportional to the signal.
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Chapter 1

Introduction

There is growing evidence that the current change in climate will be accompanied by

a significant increase in both the frequency and impact of some extreme weather and

climate events (Seneviratne et al., 2012). In a changing climate, frequency, duration

and severity of climate extremes are likely to have profound and significant impacts on

communities and ecosystems; both human society and the natural environment (e.g. Karl

& Easterling, 1999; Alexander & Arblaster, 2009; Min et al., 2011). Independent of any

changes or trends of climate extremes themselves, society is becoming more vulnerable

to climate extremes and the cost of mitigating against and adapting to climate extremes

is becoming more expensive (Adger et al., 2003; Tompkins & Adger, 2004).

Mean global temperature has often been used as the index to describe climate change

(Stott & Kettleborough, 2002; Simmons, 2004; Smith et al., 2009). However, this metric

is not necessarily relevant at a local or seasonal scale. An alternative is to look at

extreme weather phenomena, which can have significant impacts at local and regional

scales on both society and ecosystems. However, these can be difficult to define and have

long return periods, adding uncertainty to assessment (Zhang et al., 2011). This study
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uses temperature extreme indices that are able to capture moderately extreme climate

phenomena that occur frequently enough to statistically identify changes (Frich et al.,

2002; Alexander & Arblaster, 2009).

Australia is a continent containing many climatic regimes from tropical, to desert, to

temperate. It is a land of extremes where rivers “run dry or ten feet high” (Friedel et al.,

1990). Australia is influenced by many large scale phenomena, generating a naturally

very variable climate. The Australian continent provides an opportunity to assess many

climates, modes of variability and their relationships with external forcings.

The extent of daily observational data required for the study of extremes has confined

previous research to the latter half of the twentieth century. The observational period

is a very small window and may not be an accurate representation of longer term be-

haviour. Analysis of a much longer record is required to identify the influences of external

and anthropogenic forcings, internal climate variability on temperature extremes (Mann,

2007; Hegerl et al., 2007). Past climate forms the basis of future climate and similarly,

understanding past climate forms the basis of understanding future climate, presenting

the following key question:

How and why have Australian daily temperature extremes changed over the

past millennium?

1.1 Climate extremes

Extremes at regional scales may exhibit different and often much larger amplitudes than

at global scales, and thus the effect of extremes on natural environments and human

societies may be misjudged (Easterling et al., 2000; Briffa & Osborn, 2002). Australia’s
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already extreme climate may be either more susceptible or more adaptable to changing

climate extremes relative to other regions. Understanding this relationship is of benefit

to Australia as a country, and may provide an indication of how other regions that

experience similar climates will adapt when faced with similar climate stressors.

Previous assessments of climate extremes have used observational datasets (Frich et al.,

2002; Alexander et al., 2006). Research has now expanded to include natural proxy

records (e.g. Luterbacher et al., 2004) and climate models (e.g. Tebaldi et al., 2006).

Observational data most closely resembles the real world but records are temporally

and spatially limited (Solomon et al., 2007a). Proxy records extend farther back in

time but have limited accuracy and coarse spatial & temporal resolution (Mann et al.,

2008). Climate models avoid these issues, however, each model is accompanied by its own

limitations and therefore, must be well evaluated against observations or proxies (Kiktev

et al., 2007; Nicholls & Alexander, 2007; Jones et al., 2009). The use of climate models

to assess climate extremes is still relatively novel and little research has been undertaken

to understand how non-anthropogenic climate forcings drive climate extremes.

For this study, I have only assessed temperature extremes, as past studies have shown

these to be well simulated by Global Climate Models (GCMs). Comparisons using GCMs

participating in the Intergovernmental Panel on Climate Change (IPCC) diagnostic ex-

ercise for the Fourth Assessment Report (AR4) and Coupled Model Intercomparison

Project (CMIP), as well as others GCMs have shown that models are less successful at

reproducing precipitation-related extreme indices (Alexander & Arblaster, 2009; Kharin

et al., 2007; Kiktev et al., 2007; Perkins et al., 2007). For this reason precipitation related

extreme indices are not assessed in this study. To assess the ability of Mk3L to repro-

duce the temperature extreme indices used here, the model is evaluated against several

observational data sets.
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1.2 Climate of the last millennium

The long term global climate trend over the past millennium is best described as a modest

and irregular cooling from approximately 1000 to 1900, followed by an abrupt twentieth

century warming (Bradley et al., 2003). A warm period early in the millennium known

as the Medieval Climate Anomaly (MCA; ∼950–1250; Lamb, 1965); a cool period from

the 14th to 17th centuries known as the Little Ice Age (LIA; ∼1400–1700; Matthes,

1939); and rapid warming during the twentieth century characterise the climate over

this period. The existence of the MCA, LIA and recent twentieth century warming are

supported by multiple studies. Nonetheless, few conclusions can be made regarding the

relative influence of natural and unnatural forcings and, internal and external climate

drivers on temperature. Furthermore, the availability of data has restricted a great deal

of this research to the Northern Hemisphere (NH). Limited availability of proxy data and

regional inconsistencies have led to disagreement as to whether either the MCA or LIA

were global or hemispheric epochs (Hughes & Diaz, 1994; Jones et al., 2001; Mann et al.,

2009; Fernández-Donado et al., 2012). See Diaz et al. (2011) for review of the literature.

Both climate anomalies are thought to have largely been driven by a combination of solar

and volcanic forcings (e.g. Crowley, 2000; Rind, 2002; Hegerl et al., 2007). This study

uses GCM, Mk3L (Phipps et al., 2011) to assess the past thousand years of extreme

temperature over Australia.

1.3 Australian climate

The Australian climate is spatially variable and spanning from the tropics to temperate

zones, this gives rise to nonuniform climate changes. The Australian climate has experi-

enced large changes over the twentieth century and even larger changes are projected for
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the twenty-first century (Allen et al., 2000; Stott & Kettleborough, 2002; Smith et al.,

2009). The Australian continent is subject to several atmospheric and oceanic modes

of variability that have a trans-hemispheric influence; for example, El Niño-Southern

Oscillation (ENSO; e.g. Jones & Trewin, 2000; Wang & Hendon, 2007), Interdecadal Pa-

cific Oscillation (IPO; e.g. Kenyon & Hegerl, 2008), Southern Annular Mode (SAM; e.g.

Hendon et al., 2007), and Indian Ocean Dipole (IOD; e.g. Hendon, 2003; Risbey et al.,

2009). During El Niño, Eastern Australia experiences warmer, drier conditions and this

is reversed during La Niña. The IOD is a coupled ocean and atmosphere phenomenon

that affects the climate and particularly the rainfall of Australia. The Australian con-

tinent provides an opportunity to assess many climates, modes of variability and their

relationships with external forcings.

During the twentieth century, temperature and precipitation extremes have changed sig-

nificantly across Australia (Plummer et al., 1999; Collins & Della-Marta, 2000; Alexander

et al., 2007). The frequency and intensity of most extreme rainfall and temperature events

are rising faster than means (Alexander et al., 2007). Since 1950, southern and eastern

Australia have become drier, whilst the north-western two-thirds of Australia have seen

an increase in summer monsoon rainfall (Smith, 2004; Hendon et al., 2007). Higher tem-

peratures and decreased rainfall have resulted in increased severity of drought (Nicholls

& Alexander, 2007).

1.4 Drivers of temperature extremes

The high temporal resolution required to assess temperature extremes restricts most pre-

vious work to the observational period, with a focus on anthropogenic greenhouse gases

(GHG) as the dominant driver. This means little attention has been paid to understand-

ing how other drivers, and even internal variability, influence temperature extremes. The
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climate of the last millennium has been characterised by volcanic eruptions, solar irra-

diance fluctuations, changing concentrations of GHG, and modes of internal variability

(Steinhilber et al., 2012). Therefore, these forcings are a focus of this study.

1.4.1 External drivers

There is evidence that solar irradiance, volcanism, GHG (Lean et al. 1995; Crowley

& Kim, 1996; Hegerl et al. 2003) and to a lesser extent changes in the Earth’s orbit

(Jones & Mann 2004) have forced climate over the past millennium. Forcings are defined

as external perturbations to the climate system and are referred to as external forcings

in the context of this study; for example, solar irradiance, volcanism and changes to

the Earth’s orbit. However, modes of internal variability within the ocean-atmosphere

system also perturb the Australian climate and are therefore referred to as ‘internal’

forcing within the context of this study.

Volcanic eruptions eject ash and sulphuric compounds into the atmosphere that give rise

to the formation of aerosols, increasing the optical depth of the atmosphere. Volcanic

eruptions generally result in net cooling of surface temperatures (Robock, 2000). The

distribution of volcanic aerosols occurs by atmospheric circulation leading to regional

(mainly dependent on latitude) and temporal (mainly seasonal) differences. The vol-

canic reconstruction of Crowley et al. (2008) finds the largest eruption of the millennium

occurred in 1258 (unknown location) and exhibited an estimated radiative forcing of -11.2

Wm−2. The volcanic eruption of Mount Tambora, Indonesia is the second largest of the

period (-7.2 Wm−2) and occurred in 1815. The third largest volcanic eruption (Kuwae,

Vanuatu) happened in 1456 (-5.5 Wm−2).

Solar variability is the change in the amount of radiation emitted by the sun and has
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the potential to force the Earth’s climate by varying solar input and directly altering the

planetary energy budget. An anomalous period of high solar radiation occurred early

in the millennium (often associated with the MCA) and anomalous periods of low solar

radiation, the grand minima, during the LIA (Steinhilber et al., 2012). The extent to

which solar variations impact climate is a topic of much controversy and a great number

of papers have presented evidence of its dominance (e.g. Servonnat et al., 2010; Foukal

et al., 2006), and lack of statistical significance (e.g. Crowley, 2000; Mann & Cane, 2005).

Variation in the Earth’s orbit and concentrations of naturally occurring GHG have also

occurred over the pre-industrial period of the last millennium, but these are thought to

to have played less dominant roles as climate drivers (Servonnat et al., 2010). In this

study, the pre-industrial period is considered to be anything prior to 1850.

The most recent climate anomaly is evident in the instrumental record and is thus con-

siderably less debated in the literature. Almost the entire globe has experienced temper-

atures significantly warmer in the late twentieth century than earlier in the millennium.

These have been attributed to increasing anthropogenic greenhouse gases (Bauer, 2003;

Zorita, 2005; Osborn & Briffa, 2006).

1.4.2 Internal variability

Modes of climate variability; for example, ENSO, the North Atlantic Oscillation (NAO)

and the Pacific Decadal Oscillation (PDO), require accurate representation in model

simulations if they are are to be able to robustly reproduce climate extremes (Shindell

et al., 2003; Jones & Mann, 2004; Scaife et al., 2008; Kenyon & Hegerl, 2008). ENSO

has an important influence on climate extremes around the world (Kenyon & Hegerl,

2008; Alexander et al., 2009) and is the dominant mode of interannual climate variability
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on Earth (McPhaden et al., 2006; Li et al., 2011). The behaviour of ENSO is complex,

chaotic, and highly variable. Because of low-frequency variability, 500+ years need to be

examined to capture the baseline of ENSO and its characteristics (Wittenberg, 2009).

1.4.3 Anthropogenic forcings

Natural changes in GHG concentrations have occurred over the past millennium but

more recently, anthropogenic changes to GHG concentrations have become a dominant

driver of global climate variability (MacFarling Meure et al., 2006). It is evident from

temperature proxy records that the late twentieth century warming is large and unprece-

dented relative to recent millennia (Hegerl et al., 2007; Mann, 2007). An anthropogenic

signal must be included in model simulations to reproduce observed changes in climate

extremes (Crowley, 2000; Kiktev et al., 2007; Alexander & Arblaster, 2009). These trends

have generated increasing concern that climate extremes are changing in frequency and

intensity because of anthropogenic increases in GHG.

1.5 Aims

The observational period provides a small window into climatic behaviour, and therefore

may not be an accurate representation of the longer term climate system. Assessing the

influence of forcings on climate extremes over the last millennium allows for identification

of relationships between climate extremes and other variables in the climate system

that may be anomalous over the observational period. There is also consensus that

modern warming can be at least partially attributed to anthropogenic forcings. The

influence of particular forcings on other climatic variables can be difficult to identify as

instrumental data coincides with this anomalous period. Climate models such as Mk3L
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allow assessment of a wide range of relationships as model simulations encompass long-

term physical mechanisms and processes within the climate system. Understanding all

the processes that have driven temperature extremes over the last millennium is beyond

the scope of this thesis. However, this thesis offers a stepping stone to further understand

these relationships.
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Chapter 2

Methodology

2.1 Extreme indices

Table 2.1 specifies the four temperature extreme indices used in this study. These indices

are only a selection of the twenty seven climate extremes indices defined by ETCCDI

(Karl & Easterling, 1999; Zhang et al., 2011)1. The indices used in this study were chosen

to assess changes in intensity of the following absolute events: hottest days, coldest days,

hottest nights and coldest nights of a year.

Index Definition Description

TXx Annual maximum value of daily maximum temperature Hottest days

TNx Annual maximum value of daily minimum temperature Hottest nights

TXn Annual minimum value of daily maximum temperature Coldest days

TNn Annual minimum value of daily minimum temperature Coldest nights

Table 2.1: A selection of the temperature extreme indices recommended by the
ETCCDI to be used in this study.

1CCl/CLIVAR/JCOMM Expert Team on Climate Change Detection and Indices (ETCCDI);
http://ccma/seos.uvic.ca/ETCCDI
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2.2 Description of the model, Mk3L

This study uses version 1.2 of the CSIRO climate system model, Mk3L. This is a reduced

resolution GCM model configured for millennial scale climate simulations and palaeocli-

mate research (Phipps et al., 2011). Mk3L is a fully coupled general circulation model

and includes components describing the atmosphere, ocean, sea ice and land surface.

Phipps et al. (2011) describe and evaluate the model, and Phipps et al. (2012b) discuss

its response to external forcings. Mk3L was designed to combine a realistic climatology

with computational efficiency, ideal for palaeoclimate research. The atmosphere, land

and sea-ice components are reduced resolution versions of those used by the CSIRO Mk3

coupled model (Gordon et al., 2002). Mk3 contributed towards CMIP3 (Meehl et al.,

2007) and the IPCC AR4 (Solomon et al., 2007b). Another version, Mk3.6.0 is a con-

tributing model to CMIP5 and the IPCC Fifth Assessment Report (AR5; Collier et al.,

2011). Phipps et al. (2012a) study the role of external forcings in driving the global cli-

mate over the past 1500 years through assessment of Mk3L against proxy records using

several forced simulations that are used in this study.

The atmospheric component of Mk3L has 18 vertical levels; with horizontal resolutions

of 5.6◦ longitude by 3.2◦ latitude for the atmosphere, sea ice and land surface models

(Phipps et al., 2011). The oceanic component has a resolution of 2.8◦ longitude by 1.6◦

latitude and 21 vertical levels. The model features both a cumulus convection scheme

and a prognostic stratiform cloud scheme. The radiation scheme simulates full annual

and diurnal cycles of longwave and shortwave radiation (Phipps et al., 2011).

Mk3L produces a realistic simulation of the modern climate (Phipps et al., 2011). The

control state of the model is able to maintain a high degree of stability, producing only

a weak cooling on millennial timescales. Mk3L does not include biophysical compo-

nents such as dynamic vegetation or representation of the global carbon cycle. The
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leading modes of internal climate variability are reasonably well represented across the

globe. This means that the spatial and temporal variability associated with ENSO is

well represented. However, the model simulates a slightly extended ENSO cycle relative

to observations (Sanotoso et al., 2011). The model successfully simulates the magnitude

and spatial patterns of modern twentieth century warming, consistent with observations.

Mk3l does not include an aerosol scheme or atmospheric chemistry, restricting the realism

of the representation of solar and volcanic forcings and anthropogenic aerosols (Phipps

et al., 2012b). In simulations of the last millennium, the model underestimates the

relative warmth associated with the MCA and fails to reproduce the La Nina-like pattern

of temperature changes apparent over the Pacific Basin. However, it is able to simulate an

appropriate transition from the MCA to the LIA. Relative to reconstructions, the model

overestimates cooling in response to the volcanic eruption of 1258. In the Southern

Hemisphere, the model’s response to solar and volcanic forcings is more robust relative

to global analysis and the palaeoclimate reconstruction of Mann et al. (2009), (Phipps

et al., 2012a). Overall, the model is able to successfully reproduce the global climate of

the last millennium (Phipps et al., 2012b) and responds realistically to climate forcings,

particularly in the SH (Phipps et al., 2012a,b).

The spatial resolution of Mk3L

Mk3L’s spatial resolution renders it very computationally efficient, enabling multiple

forced simulations to be run over millennia. Whilst there are state-of-the-art high resolu-

tion coupled models that simulate the observed climate better than Mk3L, at the present

time these are not practical for multi-millennial simulations or large ensembles, due to

computational limitations. Mk3L balances computational efficiency, a relatively strong

climatology and numerical efficiency.
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Perkins et al. (2007) found coarse resolution models smoothed orography, limiting the

ability of models to simulate minimum temperature (Tmin) indices. Encouragingly,

CSIRO Mk3 was ranked second best of all models; based on its ability to reproduce

minimum & maximum temperatures and precipitation. A review of the literature does

not suggest that the resolution of Mk3L will hinder the model’s ability to reproduce

temperature extremes. Indeed, Alexander & Arblaster (2009) indicated that model res-

olution was not critical for the simulation of temperature extremes. Mk3L’s ability to

reproduce temperature extremes is evaluated by comparison with observational daily

data sets (Chapter 3).

2.3 Forcings and experiments

To appreciate the influence of an external forcing, it is necessary to disentangle the mul-

tiple nonlinear feedbacks that can amplify or diminish the climate forcing as well as

change the nature and consistency of the response. To do this, multiple model simula-

tions were run over the past millennium with various combinations of external forcings.

Model simulations were forced with combinations of the following anthropogenic and

natural forcings: changes in the Earth’s orbital parameters (Berger, 1978), concentra-

tions of greenhouse gases (MacFarling Meure et al., 2006), solar irradiance (Steinhilber

et al., 2009), and volcanic eruptions (Crowley et al., 2008) each with reasonably well

constrained boundary conditions (e.g. Schmidt et al., 2012). The model was initialised in

1 CE and then run to equilibrium under permanent pre-industrial boundary conditions.

Orbital, greenhouse gases, solar, and volcanic forcings were progressively included and

therefore, simulations O, OG, OGS, OGV and OGSV were initialised from the control

simulation at varying years within the first millennium. In total, five model simulations

were run, although only the last 1000 years of each will be assessed here. The control
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simulation is not used for assessment. Phipps et al. (2012b) assesses the model’s response

to external forcings. Variations in each climate forcing over the past 1000 years are shown

in Figure 2.1.

Figure 2.1: The forcings on the climate system between 1000 CE and 2000 CE: (a)
Changes in the distribution of insolation due to changes in the Earth’s orbital geom-
etry (Wm−2; Berger, 1978), (b) the equivalent CO2 concentration (ppm; MacFarling
Meure et al., 2006), (c) total solar irradiance (Wm−2; Steinhilber et al., 2009), (d)
the radiative forcing due to volcanic eruptions (Wm−2; Crowley et al., 2008).

The following combinations of forcings are applied to Mk3L as summarised in Table 2.2:

orbital only (O); orbital and greenhouse gases (OG); orbital, greenhouse gases and solar

irradiation (OGS); orbital, greenhouse gases and volcanic activity (OGV); and orbital,

greenhouse gases, solar irradiation, and volcanic activity (OGSV). The role of each forcing
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is able to be distinguished by comparison between each simulation. Extreme indices

(Table 2.1) were calculated for all model simulations.

Abbreviation Forcing(s)

O Orbital

OG Orbital, greenhouse gases

OGS Orbital, greenhouse gases, solar irradiance

OGV Orbital, greenhouse gases, volcanic aerosols

OGSV Orbital, greenhouse gases, solar irradiance, volcanic aerosols

Table 2.2: A summary of forcings applied to climate model simulations. Their
values can be found in Figure 2.1.

The three largest volcanic eruptions that have occurred within the last thousand years are

listed in Table 2.3. These eruptions were chosen to assess the influence of volcanism on

temperature extremes. In order of magnitude they are and will be referred to in the text

as: 1258, Tambora and Kuwae. To assess the influence of changes in solar irradiation,

the Maunder Minimum (1645–1715) was chosen as the only anomalously cool period that

does not coincide with large volcanic eruptions.

Location Year Effective Radiative Forcing

Unknown 1258 -11.2 Wm−2

Mount Tambora, Indonesia 1815 -7.2 Wm−2

Kuwae, Vanuatu 1456 -5.5 Wm−2

Table 2.3: The three largest volcanic eruptions that have occurred over the last
millennium. Radiative forcing due to volcanism are estimates based on ice core
reconstructions (Figure 2.1d; Crowley et al., 2008).

2.4 Trends and statistical significance

Trends are calculated using ordinary least squares (OLS) regression. OLS is sensitive to

series outliers and does not account for autocorrelation in time series residuals, which

may be present in extremes. However, it has been shown that these indices are not
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highly correlated in time and that OLS trends are robust for extreme temperature indices

(Alexander & Arblaster, 2009).

A students t-test is used to test the null hypothesis that there is no statistically significant

difference between (i) forced and unforced simulations (ii) the preindustrial mean and a

forced climatological event or anomalous period. A 95% confidence interval is used to

test significance.
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Chapter 3

Model-data comparison

3.1 Observational data sets

The observational data sets used for model evaluation are outlined in Table 3.1. All

available datasets containing adequate observations within Australia were used for com-

parison (Table 3.1). All seven datasets have varying spatial coverage across Australia and

have used different interpolation techniques to produce gridded fields. The methodology

and level of quality control varies amongst datasets. Using a broad spread of datasets to

perform model evaluation increases the comprehensiveness of the model assessment and

confidence in the conclusions with respect to dataset uncertainties.

The Global Historical Climatology Network-Daily Dataset (GHCN-Daily; Durre et al.,

2010) provide the source of data for GHCN AUS (Vogel, 2012), HadGHCND (Caesar

et al., 2006) and GHCNDEX (Donat et al., 2012b). These three datasets were created

and are managed independently of GHCN-Daily. HadGHCND, for example, calculates

indices after gridding unlike GHCN AUS and GHCNDEX. HadEX1 (Alexander et al.,

18



Data set Quality
controlled?

Time period compared Reference

GHCNDEX No 1957-2000 Donat et al. (2012b)

GHCN AUS No 1957-2000 Vogel (2012)

HQ AUS Yes 1957-2000 Haylock & Nicholls (2000);
Trewin (2001); Vogel (2012)

HadGHCND Some 1957-2000 Caesar et al. (2006)

HadEX1 Yes 1957-2000 Alexander et al. (2006)

HadEX2 Yes 1911-2000 Donat et al. (2012a)

AWAP Some 1911-2000 Jones & Wang (2009); Vogel
(2012)

Table 3.1: Summary of observational data sets used for model evaluation.

2006) and HadEX2 (Donat et al., 2012a) are quality controlled datasets each compiled

from a number of smaller dataset initiatives, GHCND-Daily and ETCCDI. The HQ

dataset, gridded by Vogel (2012) and originally created by Haylock & Nicholls (2000);

Trewin (2001), is quality controlled for inhomogeneities. The HQ AUS, AWAP and

GHCN AUS datasets used here were each regridded onto a 3◦ by 3◦ grid by Vogel (2012).

Of the datasets used, most contain data for Australian stations that were adjusted for

inhomogeneities after 1956 (Trewin, 2001). For this reason it was decided that 1957 would

be a reasonable start date to begin model comparison. However, HadEX2 records extend

to 1901 and AWAP records extend back to 1911. Therefore, where appropriate, model

comparisons for AWAP and HadEX2 datasets start from 1911. The model simulations

end in 2000, and therefore this was chosen as the end date for all comparisons.

Comparisons between observations and the model were performed over Australia only.

These comparisons uses all forcings, i.e. simulation OGSV. Assessments based on Aus-

tralian averages, such as time series and trend calculations, only use information con-

taining grid boxes common to all datasets. It follows that limited observational spatial

coverage can easily become a source of uncertainty (Donat & Alexander, 2012) when eval-
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uating model performance. Using all available datasets and hence all available spatial

data, maximises common spatial area, reduces uncertainty and increases confidence in

Australian averaged calculations. Each dataset is based on a varying number of weather

stations, has varying regional coverage, and is gridded at differing resolutions. Therefore,

each dataset was interpolated onto the model’s grid (5.6◦ by 3.2◦) using weighted average

interpolation.

Reanalysis data sets could potentially be used to aid model evaluation. However, the

assimilation methods and varying station networks over time means they lack consistency

relative to observational datasets, limiting their usefulness in this regard (Bengtsson et al.,

2004; Simmons, 2004; Brands et al., 2012). Considering these factors and the availability

of observational data sets over Australia, reanalyses were not used to aid model evaluation

in this study.

3.2 Results of comparison

3.2.1 Model minus observations

Difference plots (model minus observations) are assessed to determine how well the model

captures the spatial variations and magnitude of temperature extremes (Figure 3.1).

Comparisons using AWAP and HadEX2 were performed over the period 1911-2000, whilst

comparisons with other datasets are restricted to 1957-2000 (Section 3.1).

The model is generally too cool for coldest days and too warm for hottest nights (Fig-

ure 3.1). The model overestimates (underestimates) the intensity of hottest days in north

eastern (south western) Australia. The model also produces a cooler central Australia

and warmer coastal Australia for the coldest nights index. For the most part, differ-
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Figure 3.1: Model minus observed temperature extremes. AWAP and HadEX2
are compared over the period 1911-2000 (averaged) whereas, all other datasets are
compared over the period 1957-2000 (averaged). Units are ◦C.
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ences between the model and observation are within ±5◦C and the spatial patterns of

differences for each index are broadly similar irrespective of which dataset is used for

comparison (Figure 3.1).

3.2.2 Trends

Australian averaged time series and trend calculations are generated over the period 1957-

2000 (Figure 3.2 and Table 3.2, respectively). In order that comparable analysis can be

performed, only grid boxes where observed data exist are used. Confidence intervals are

calculated to assess the uncertainty in trend calculations.

Dataset TXx TNx TXn TNn

GHCNDEX +0.02(-0.13/0.17) +0.18(0.02/0.34) +0.24(0.03/0.44) +0.43(0.26/0.60)

GHCN AUS +0.02(-0.13/0.17) +0.14(0.03/0.36) +0.27(0.08/0.47) +0.23(0.08/0.38)

HQ AUS +0.02(-0.14/0.18) +0.19(0.03/0.36) +0.28(0.08/0.49) +0.35(0.20/0.50)

HadGHCND 0.00(-0.16/0.16) +0.23(0.07/0.38) +0.27(0.07/0.47) +0.34(0.18/0.50)

HadEX1 +0.06(-0.12/0.24 +0.21(0.05/0.38) +0.30(0.09/0.50) +0.44(0.27/0.60)

HadEX2 +0.05(-0.11/0.21) +0.21(0.04/0.38) +0.28(0.07/0.50) +0.32(0.16/0.48)

AWAP +0.04(-0.12/0.20) +0.24(0.06/0.41) +0.24(0.02/0.46) +0.25(0.08/0.41)

Mk3L (model) +0.16(0.07/0.26) +0.15(0.03/0.27) +0.20(-0.16/0.57) +0.24(0.12/0.37)

Table 3.2: Observed and modelled linear trends calculated over 1957-2000 for each
index (see Table 2.1 for index definitions). Trends are calculated using grid boxes con-
taining observations common to all datasets and averaged across Australia. Boldface
indicates trends that are significant at the 5% level. 5 and 95% confidence intervals
are shown in brackets. Units are ◦C per decade.

The trends for each index are broadly similar irrespective of the dataset used for com-

parison. Relative to observations, the model successfully reproduces trends of the same

sign for all indices (Table 3.2). Furthermore, all datasets and the model produce trends

of the same order of magnitude for three indices; hottest nights, coldest days and coldest
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nights trends. The model reproduces hottest and coldest nights particularly well as these

indices fall within the breadth of observations. The model underestimates the trend in

coldest days and overestimates the trend in hottest days. However, the spread between

observational trends is less for coldest and hottest days, relative to other indices.

3.2.3 Confidence intervals

Confidence intervals (Table 3.2) for the model do not overlap with zero and are narrower

than that of observations for hottest days, hottest nights and coldest nights. This shows

that for these indices there is greater certainty in comparison to observations. The coldest

nights index is the only exception; the model shows less certainty than observations by

having broader confidence intervals that overlap zero. This uncertainty is likely related

to the high interannual variability (Table 3.3) simulated by the model for this index.

3.2.4 Variability

Dataset TXx TNx TXn TNn

GHCNDEX 0.62 0.69 0.90 0.88

GHCN 0.63 0.68 0.87 0.69

HQ 0.66 0.74 0.92 0.77

HadGHCND 0.67 0.71 0.88 0.79

HadEX1 0.75 0.73 0.93 0.88

HadEX2 0.65 0.75 0.96 0.79

AWAP 0.67 0.78 0.96 0.75

Mk3L (model) 0.45 0.53 1.54 0.60

Table 3.3: The standard deviations of Australian averaged time series for period
the 1957 to 2000, according to each dataset and the model. The standard deviation
is calculated for each index (Table 2.1) using only grid boxes containing observations
common to all datasets. Units are ◦C.

Standard deviations of time series (Figure 3.2) are calculated and analysed for further
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Figure 3.2: Temperature (◦C) of hottest days (TNn), hottest nights (TNx), coldest
days (TXn) and coldest nights (TNn) from 1957 to 2000 averaged over Australia
using grid squares containing observations common to all datasets. Red = GHCN-
DEX, Green = GHCN AUS, Light Blue = HQ AUS, Pink = HadGHCND, Yellow =
HadEX1, Thin Black = HadEX2, Blue = AWAP, Thick Black = Mk3L.

assessment of variability, recorded in Table 3.3. Compared to observations the model

slightly underestimates year-to-year variability of all indices except the coldest days in-

dex which displays more variability than observations. Coldest days is also the most

variable index across the model and observations, followed by coldest nights. Less vari-

able than these two indices, hottest days and hottest nights have comparable variability.

The model agrees with observations that coldest days displays the largest internnual

variability followed by coldest nights. Observations show hottest nights exhibits the third

highest interannual variability followed by hottest days, whereas the relative variability

exhibited by these two indices within the model is reversed.

24



3.3 Summary of model evaluation

Differences in the magnitude of the trend may be the result of decreased or increased

year-to-year variability of the model relative to observations. The model seems to have

least skill reproducing the variability of coldest days ; this index had a high degree of

variability relative to observations (Figure 3.2 and Table 3.3). The model does well

capturing variability for hottest days, hottest nights and coldest nights and only slightly

underestimates the variability of these indices.

The model overestimates temperature for the hottest nights index (Figure 3.2). The

model is most skillful at reproducing the temperature magnitude of hottest days and

coldest nights. The model is also very capable at capturing trends for hottest nights,

coldest days and coldest nights. Spatially the model does well and generally does not

differ from observations by more than ±5◦C (Figure 3.1).

Relative to simulated mean temperature using state of the art CMIP5 models (not pre-

sented here), the model produces very pleasing results (Sillmann et al., 2012). Mean

temperatures are much easier to reproduce than extremes and, considering the model’s

coarse resolution, it appears capable of reproducing observational temperature extremes.

Moreover, Mk3L performs competitively and improves on the ability of many, if not all of

the CMIP3 models to reproduce temperature extremes (Perkins et al., 2007; Alexander

& Arblaster, 2009); although Alexander & Arblaster (2009) did not assess exactly the

same indices used here.

The model successfully reproduces the trend, variability, and intensity of all indices.

Across all measures assessed here, the model does not vary from the observations by

more than the observational datasets vary amongst themselves.
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Chapter 4

Results

The results section is structured along the lines of the following questions:

1. How does internal variability drive temperature extremes? (Section 4.1)

2. How do external forcings drive temperature extremes? (Section 4.2)

3. How do solar and volcanic forcings act together to drive temperature extremes?
(Section 4.3)

4. How do anthropogenic forcings drive temperature extremes? (Section 4.4)

5. What is the overall variability of temperature extremes? (Section 4.5)

4.1 Internal variability

This study primarily assesses the role of external drivers on temperature extremes in

Australia. To varying degrees extreme indices are also influenced by internal climate

drivers. Here, initial analysis turns to identifying relationships between dominant modes

of internal climate variability and temperature extremes in Australia. This approach uses

simulation OGSV as the most realistic simulation of the real world. Figure 4.1 shows the
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Figure 4.1: The correlation between the magnitude of annual Australia averaged
temperature extremes and seasonal means in sea surface temperature, sea level pres-
sure and cloudiness, according to simulation OGSV over the pre-industrial period
(1001 to 1850). Correlations are calculated with summer (December January Febru-
ary (DJF)) for Tmax indices and winter (June July August (JJA)) for Tmin indices.

correlations between temperature extreme indices and the seasonal averages in sea surface

temperature (SST), sea level pressure (SLP) and cloudiness for the period 1001 to 1850.

Tmin indices were correlated against winter variables (June July August (JJA)); whereas

Tmax indices were correlated against summer variables (December January February

(DJF)). Correlations between temperature indices (Table 2.1) and mean SST in the Niño

3, 3.4 & 4 regions, Indian Ocean Dipole (IOD) and cloudiness over Australia are given in

Table 4.1 and Table 4.2. Assessment of Figure 4.1 led to the singling out of these internal

climate variables for a more detailed appraisal of the modes within the ocean-atmosphere

system that are driving extremes in Australia.
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The IOD is measured using the Dipole Mode Index (DMI) (Saji et al., 1999). The DMI

is defined as the SST gradient between the western equatorial Indian Ocean (50◦- 70◦E,

10◦S - 10◦N) and the south eastern equatorial Indian Ocean (90◦- 100◦E, 10◦S - O◦S).

Niño region indices (Trenberth, 1997) are calculated as the seasonal area averaged SST

(◦C) for the specified region. Niño 3 (150◦- 90◦W, 5◦S - 5◦N), Niño 3.4 (170◦- 120◦W,

5◦S - 5◦N) and Niño 4 (160◦E - 150◦W, 5◦S - 5◦N) regions are calculated.

An ENSO signal is more evident in Tmax indices rather than Tmin and exhibits the

strongest relationship with hottest days. Interdecadal Pacific Oscillation (IPO) and Pa-

cific Decadal Oscillation (PDO) patterns are evident in all extreme indices but the signals

are weak and do not show a particularly strong relationship with any index. All four

extreme indices exhibit correlations with local SST, however Tmax exhibit particularly

strong correlations relative to Tmin (Figure 4.1). The only strong correlations between

SLP and temperature indices are associated with Tmin indices.

Correlations are calculated between extreme temperature indices and seasonal Australia

averaged cloudiness. During the day, clouds reflect shortwave radiation, restricting the

amount of solar radiation to reach the Earth’s surface and therefore cooling temperatures.

During the night, clouds have the opposite effect, trapping longwave radiation and caus-

ing the Earth’s surface to warm. The effects of cloudiness on surface temperature are

also dependent on many other variables associated with cloud type, height within the

troposphere, density etc (Dai et al., 1999).

4.1.1 Hottest days

An ENSO signal is evident in hottest days and reasonable correlations exist with the

Niño 3, 3.4 & 4 regions. Of these relationships, it is evident that the strongest signals lie

28



Indices TXx TNx

Niño 3 +0.34 +0.26

Niño 3.4 +0.29 +0.19

Niño 4 +0.33 +0.21

DMI +0.23 -0.03

Aust. cloudiness -0.27 +0.19

Table 4.1: The correlation between
the magnitude of annual Australia
averaged temperature extremes and
DJF SST means in the Niño 3, 3.4
& 4 regions, DMI and Australia av-
eraged cloudiness.

Indices TXn TNn

Niño 3 +0.18 +0.06

Niño 3.4 +0.18 +0.06

Niño 4 +0.22 +0.05

DMI +0.28 -0.15

Aust. cloudiness -0.61 +0.19

Table 4.2: The correlation between
the magnitude of annual Australia
averaged temperature extremes and
JJA SST means in the Niño 3, 3.4
& 4 regions, DMI and Australia av-
eraged cloudiness.

with Niño 3 and Niño 4. These correlations are almost equal during both summer (DJF)

and winter (JJA - not shown) but strongest during DJF. The Niño 3 region explains 12%

(r2 = 0.12, where r = +0.34); and likewise the Niño 4 region explains 11% (r2 = 0.11,

where r = +0.33), of the interannual variability of hottest days (Table 4.1). Whilst these

correlations are not particularly strong, these are the strongest relationships common

to the internal indices assessed here and hottest days. Hottest days are correlated with

cloudless days, but this relationship is not particularly strong, maintaining 7% (r2 =

0.07, where r = -0.26) of mutual interannual variability.

4.1.2 Hottest nights

Whilst strong correlations exist between hottest nights and SST, the patterns of the

responsible dynamical modes are less obvious. Hottest nights does not exhibit strong

correlations with other variables (SLP or cloudiness; Figure 4.1). Hottest nights is corre-

lated to the Niño regions assessed here (Table 4.1), suggesting an ENSO-like relationship

with similar correlations during winter (JJA - not shown). However, the lack of a dom-

inant ENSO-like pattern in Figure 4.1 shows that other modes are also important, as
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similarly strong correlations are evident in many other regions.

4.1.3 Coldest days

Cloudiness is very highly correlated with coldest days relative to the other extreme in-

dices. Coldest days are found to share 38% of variability (r2 = 0.38, where r = -0.61)

with the high cloudiness region over Australia. This correlation indicates that the vari-

ability of coldest days is largely ( 38%) characterised by the variability of cloudiness (an

internal climate forcing).

Coldest days also demonstrates an IOD signal (Figure 4.1). The correlation between the

Dipole Mode Index and coldest days is 0.28, describing 8% of the variance for this index

(Table 4.2). Coldest days negatively correlates with a high pressure zone in the southeast

Indian Ocean and positively correlates with a low pressure zone in the northeast Indian

Ocean over Indonesia.

The variability in IOD and cloudiness can account for almost half of the variability exhib-

ited by coldest days. Across all extreme indices assessed, coldest days maintains strong

(either negative or positive) correlations across all three climatic variables considered

here (SST, SLP and cloudiness), indicating that internal climate drivers have a substan-

tial relationship with the variability of this index. The relatively large number of strong

correlations identified across these variables, associated with and accordingly driving this

index, demonstrate the reason for its large interannual variability.
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4.1.4 Coldest nights

Figure 4.1 shows a relationship between the coldest nights index and high SLP over a

broad region spanning Western Australia and the Indian Ocean. This region coincides

with the region where coldest nights correlates with low cloudiness (Figure 4.1). The

temperature gradient over the equatorial Indian Ocean gives rise to a small relationship

with the IOD (Table 4.2).

Whilst some relationships are evident between the variability of ocean-atmosphere vari-

ables and coldest nights (Figure 4.1), the index maintains relatively low correlations with

all area averaged correlations assessed here (Table 4.1 and Table 4.2). Few relationships

are identified between specific modes of variability and coldest nights.

4.1.5 Summary of internal variability

Hottest days variability is highly correlated to equatorial and local SST, particularly

ENSO and Niño regions 3 & 4. Cloud cover during the night relates to warm nights and

cold days as expected and the vice versa. This relationship holds true for all extreme

temperature indices assessed here. The IOD maintains a strong relationship with coldest

days and also, hottest days, to a lesser extent. Coldest days maintain high correlations

with many variables, suggesting this index is strongly influenced by internal climate

drivers, some of which were not able to be defined. Similarly, coldest nights exhibits many

high correlations but, on the other hand, few of these relationships are able to be traced

to particular climatic modes. Other internal modes are likely to be contributing drivers

to all indices even though they weren’t able to be identified through the assessments

performed here (Figure 4.1, Table 4.1 and Table 4.2).
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4.2 External drivers

This study now turns to understanding the role of external drivers on temperature ex-

tremes in Australia over the past 1000 years. In this case, external drivers refer to volcanic

(Section 4.2.1) and solar (Section 4.2.3) forcings and how they interplay (Section 4.3).

The structure of Section 4.2 and Section 4.1 are not analogous because the behaviour

of internal forcings are often intertwined and their influence varies largely from index

to index, in contrast to external forcings, where large difference arise between forcings

themselves.

4.2.1 Volcanic eruptions

Figure 4.2 shows the time series of simulation OGV and simulation OGSV (Table 2.2).

Signals from all three volcanoes assessed here (Table 2.3) are evident in the OGV and

OGSV time series and are anomalous relative to the pre-industrial mean (Figure 4.2a &

b, respectively). The volcanic eruption of 1258 exhibits a similar response to Tambora

(Figure 4.2b) even though 1258 produced a larger radiative forcing anomaly (Table 2.3).

Subtracting simulation OG from simulation OGV isolates the influence of volcanism

from other forcings and allows forcing specific analysis to be performed. To robustly

capture the volcanic signal and reduce the influence of internal interannual variability,

a composite of eruptions was used for assessment. Refer to Figure 4.3 for time series of

OGV minus OG, averaged over Australia. The time series composite reveals large, abrupt

and statistically significant cooling of hottest days, hottest nights and coldest nights. In

all cases cooling occurs abruptly; in the year subsequent to volcanic eruptions. The

influence of volcanic eruptions on hottest nights and coldest nights is longer lived relative

to hottest days with statistically significant cooling still present in the fourth year after
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Figure 4.2: Changes in temperature extremes over the last millennium relative to
the pre-industrial mean. (a) Simulation OGV and (b) simulation OGSV, respectively,
expressed as 10 year running means. Statistical significance at the 5% level is denoted
by circles.

eruption. Considering the magnitude of cooling, hottest nights cools most followed by

hottest days and coldest nights. No influence is identifiable for emphcoldest days.

Considering the longevity of the volcanic signal in temperature extremes, the year of

eruption plus the subsequent two calendar years is used to further assess the influence of

volcanism on extremes. Again, a composite of eruptions is used to objectively capture

the volcanic signal by improving the signal to noise ratio. This produces a composite of

nine calendar years, which is used to assess spatial variations (Figure 4.4).
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Figure 4.3: Composite of OGV minus OG (refer to Table 2.2 for explanation of
simulations) of the three largest eruptions with a twenty year window: 1248-1268,
1446-1466, 1806-1826. Year zero represents 1258, 1456 and 1816 simultaneously; year
10 represents 1268, 1466, 1826 etc. Circles denote statistical significance at the 5%
level.

All indices that are influenced by volcanism (hottest days, hottest nights and coldest

nights) yield large temperature changes of at least 2.5◦C (Figure 4.4). The spatial dis-

tribution of the temperature change is different for each index. However, the number of

grid boxes to undergo significant cooling is comparable for each index. Across all indices

that experience significant cooling, the coastal region of eastern Australia cools least.

Still, across all indices, significant cooling occurs in almost every grid box. Tasmania

experiences significant cooling for the hottest nights index only. On a grid point by grid
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Figure 4.4: Composites of simulation OGV minus simulation OG of three largest
volcanic eruptions (Table 2.3) for each extreme temperature index. Stippling indi-
cates significance at the 5% level. Units are ◦C.

point basis, coldest nights cools most (3.1◦C). Alternatively, averaged across Australia,

hottest nights undergoes the largest cooling (2.6◦C). The cooling for hottest nights is

more uniform across Australia compared to the other indices. The coldest nights index

on the other hand undergoes more extreme but localised changes.

No volcanic eruption, regardless of amplitude, was found to influence the coldest days

index. No (significant) change in magnitude or behaviour of coldest days were found in

the years subsequent to an eruption.
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4.2.2 Summary of volcanic forcing

Volcanic eruptions significantly influence the extremity of hottest days, coldest nights

and hottest nights indices. Hottest days and nights become less extreme. Coldest nights

become more extreme and coldest days are not influenced. Volcanic eruptions have a

dramatic, but brief influence on temperature extremes (one to four years).

4.2.3 Solar Irradiance

Anomalies of temperature extremes within forced simulation OGS exhibit warming early

in the millennium (Medieval Climate Anomaly) and a slight cooling in the seventeenth

century (Little Ice Age), coinciding with periods of relatively high and low solar irradi-

ance, respectively (Figure 2.1). These are less evident in simulations involving volcanic

eruptions (Figure 4.2). However, it is questionable whether these features are related

to fluctuations of TSI as these features remain identifiable under OG forcing only (Fig-

ure 4.5b). Temperature extremes forced by OG give rise to larger centennial scale vari-

ability during the pre-industrial era. Thus, temperature extreme anomalies may not be

be forced by solar variability as they are also evident in simulation OG but may be more

obvious due to the lack of other centennial scale variability.

The Maunder Minimum (MM) is analysed in further detail, being the period of low-

est solar insolation without a major volcanic eruption. No significant changes to the

temperature extremes between simulations, OGS and OG, are identified during the MM

(Figure 4.6). Analysis of the period with lowest solar insolation, the Spörer Minimum

(1460-1550), does not reveal statistically significant changes to temperature extremes

(not shown), relative to both mean pre-industrial extremes and simulation OG.
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Figure 4.5: Changes in temperature extremes over the last millennium relative to
the pre-industrial mean. (a) Simulation OGS and (b) simulation OG, expressed as
10 year runnings means. Statistical significance at the 5% level is denoted by circles.
Units are ◦C.

4.2.4 Summary of solar forcings

No significant changes to any temperature extreme indices were found through analysis

of direct comparisons between OGS and OG simulations (Table 2.2) over the MM (1645

to 1715); nor comparisons between the MM and the pre-industrial period.
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Figure 4.6: Simulation OGS minus simulation OG for each extreme temperature
index (Table 2.1) during the Maunder Minimum (1645 to 1715). No statistically
significant values were found at the 5% level. Units are ◦C.

4.3 Dynamic duo; volcanic and solar forcings

All three volcanoes (Table 2.3) are evident in the time series of simulations OGV and

OGSV (Figure 4.2). Close analysis of these time series puts perspective on the combined

influence of total solar irradiance (TSI) and volcanism. Within simulation OGV and

generally across indices, the largest eruption, 1258, exhibits the largest anomalous cool-

ing, Tambora exhibits the second largest anomalous cooling and Kuwae the third largest

anomalous cooling. Within OGSV, Tambora exhibits the largest cooling, followed by
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Kuwae and 1258, which cool comparably. Of the three volcanic eruptions; 1258 occurred

during the MCA, Kuwae during the Spörer Minimum (SM) and Tambora within the LIA.

Simulation OGSV results in greater cooling of Tmax subsequently Tambora, relative to

simulation OGV. Hottest days exhibits greater cooling and is the only index to undergo

significant change following Kuwae in simulation OGSV relative to OGV. 1258 does not

exhibit uniform changes and the only index influenced by the inclusion of solar forcing

in OGSV relative to OGV is coldest nights, which cools less. Comparing the three

volcanic eruptions (Table 2.3), Tmax experiences greater cooling subsequent to Kuwae

and Tambora, whereas coldest nights experiences less cooling subsequent to 1258 relative

to simulation OGV (comparing Figure 4.2a & b). Whilst TSI does not have a direct

impact on temperature extremes, comparisons between simulations OGSV and OGV,

shows that fluctuations in TSI may enhance or reduce the impact of volcanic eruptions.

To test this hypothesis, analyses performed in Section 4.2.1 are repeated using simulation

OGSV.

Comparing Figures 4.3 and 4.7, the signal from volcanic eruptions persists longer in

simulation OGSV relative to OGV only. Hottest nights reaches maximum cooling later

in simulation OGSV relative to simulation OGV. Continuous, statistically significant,

decreased temperatures experienced by hottest nights is extended following an eruption

to experience significant cooling in the sixth year following eruption. Hottest days also

cools for longer and endures significant cooling in the sixth year following a volcanic

eruption. Thus, Tmax indices are similarly influenced by volcanic eruptions when the

model is forced with OGSV. The cooling experienced following an eruption is extended

for Tmax indices in the presence of volcanic and solar forcings (OGSV) relative to volcanic

only (OGV).

However, the signal of volcanic eruptions on coldest nights is delayed and the longevity
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Figure 4.7: The composite of OGSV minus OG for the three largest volcanic erup-
tions of the millennium with a twenty year window: 1248-1268, 1446-1466, 1806-1826.
As in Figure 4.3 but for simulations, OGSV minus OG.

reduced with the inclusion of solar forcing. This index is not impacted upon until later

following eruptions and exhibits half the number of statistically significant anomalous

points (which are annual extremes). The coldest days index does cool subsequent to

volcanic eruptions, as is evident in Figure 4.7 & the three eruptions in Figure 4.2b.

However, it is not possible to say that this is related to volcanism, due to the high year

to year variability exhibited by this index (Figure 4.12) and the lack of grid points that

undergo statistically significant cooling following eruptions (Figure 4.8). Almost all grid

boxes of the Tmax indices cool significantly over the three year window chosen to assess
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Figure 4.8: As Figure 4.4 but for simulations, OGSV minus OG. Units are ◦C.

the spatial influence of volcanism on temperature extremes. The east coast is a less

influenced area of Australia (Figure 4.8), analogous to the OGV results (Figure 4.4). In

Tasmania the extremity of hottest nights index declines significantly under both OGSV

and OGV forcings subsequent to eruptions. Tasmania is also subjected to large decreases

in extreme temperatures for hottest days but this is not statistically significant. Forced

by OGSV, coldest nights has few grid points that undergo significant change, dissimilar

to the OGV results (Figure 4.4). Solar forcing strengthens the influence of volcanic

eruptions on Tmax indices and weakens the influence of volcanic eruptions on coldest

nights (Tmin).
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4.3.1 Summary of dynamic duo

A significant change is not observed in temperature extremes during periods of solar fluc-

tuation under OGS forcings. However, solar forcing does alter the behaviour of extreme

temperature indices following volcanic eruptions. The presence of solar forcings during

volcanic eruptions has varying impacts on extreme temperature indices. Tmax deviations

were extended, whereas coldest nights deviations were abridged. The coldest days index

is not impacted upon by volcanic eruptions (simulation OGV) or anomalous TSI (simula-

tion OGS) but a volcanic signal is evident in simulation OGSV. Solar forcing is found to

have little influence on temperature extremes but enhances (or reduces) and temporally

extends (or shortens) the impact of volcanic eruptions on temperature extremes.

4.4 Anthropogenic drivers

Figure 4.9 shows the ten year running mean of the orbital only (O) simulation annual

temperature extreme anomalies relative to the pre-industrial period for each index aver-

aged over Australia. When orbital forcing alone is applied to the model, no long-term

trend is evident. The addition of greenhouse gases gives rise to a clear and large warming

trend during the industrial period (Figure 4.5). To determine the influence of anthro-

pogenic forcing on annual temperature extremes, the recent period since industrialisation

is compared to the millennium, and comparisons are made between forced experiments

OG and O.

Coldest days remain highly variable (maintaining ±0.8 ◦C) as they have done under all the

forcings combinations (Table 2.2) applied to the model simulations (Figure 4.9). Within

all simulations, coldest days exhibits greater variability relative to the other indices.

Anomalies of other indices mostly lie between ±0.4 ◦C throughout the millennium with
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Figure 4.9: Annual temperature extreme anomalies over the last millennium relative
to the pre-industrial mean. Forced by orbital (O) forcing only. Expressed as 10 year
runnings means in ◦C. Statistical significance at the 5% level is denoted by circles.

no long term trends.

Time series and trends of temperature extremes for simulation OG and simulation O

over the twentieth century are displayed in Figure 4.10. Anthropogenic GHG increase

the magnitude of the temperature extremes and their trends for all indices relative to

simulation O. Trends for all indices are larger when forced with OG relative to O. Tmax

indices hold the largest trends and trend differences between OG and O forcings. The

coldest nights trend is consistently increasing throughout the century prior to 1990, where

it experiences a sudden cooling. The increasing trend of coldest nights may be influenced

by this sharp temperature decline in the last decade. Coldest days is the only trend

under simulation OG that is not statistically significant and this is likely due to its large

interannual variability. Trends and time series over 1957 to 2000 are given in Table 3.2

and Figure 3.2, respectively.

Anomalous values are calculated for each index and simulation. Anomalous events, such

as those caused by changes in external forcings, may drive statistically significant anoma-

lous values. Statistically significant anomalies are shown in Figure 4.2 for OGV and
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Figure 4.10: OG and O time series overlaid with the line of best fit over the twen-
tieth century for temperature extreme indices averaged over Australia. Temperature
(y axis) units are ◦C. Trend units are ◦C per decade. Boldface signifies trends that
are significant at 5% level.

OGSV forced time series; in Figure 4.5 for OGS and OG forced time series; and in Fig-

ure 4.9 for O forced time series. They reveal events or time periods where changes in

external forcings have occurred.

The occurrence of significant values during the post industrial period (1970-2000) are

used to assess the role (if any) greenhouse gases play in driving temperature extremes

during this post industrial period (Table 4.3). A restricted post industrial time period

was chosen (30 years) to maximise the ratio of the industrial time period relative to the
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Forcing(s) TXx TNx TXn TNn

O 4% 4% 0% 4%

OG 12% 23% 2% 16%

OG:O 300% 550% N/A 450%

Table 4.3: The percentage of annual extreme values that are statistically significant
and fall between 1970 to 2000 as a percentage of the entire millennium. The ratio
of statistically significant points of OG relative to O over 1970 to 2000 are shown as
OG:O.

millennium. Measured in calendar years, the period 1970 to 2000 represents 3% of the

millennium. In this respect, 3% of all statistically significant values would be expected

to fall within this period.

O forced simulation gives rise to a scenario very similar to this (Table 4.3); statistically

significant points for all indices fall between 0 and 4% of the millennium. When forced

by OG, three of the four indices have more than 3% of their statistically significant

extreme days fall during this industrial period. Hottest nights are most influenced by

anthropogenic greenhouse gases (23%), followed by coldest nights (16%), hottest days

(12%) and coldest days (2%). The sudden decrease in the magnitude of coldest nights

after 1995 (Figure 4.10(d)) rains statistical significance but is more likely to be caused by

internal variability than greenhouse gases and may therefore be amplifying and misleading

the results of Table 4.3.

4.4.1 Summary of anthropogenic forcing

The inclusion of greenhouse gases increases the number of statistically significant extreme

days. This demonstrates that greenhouse gases are a dominant driver of temperature

extremes during this period with the exception of coldest days.
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4.5 Variability of temperature extremes over the last

millennium

It is necessary to assess the isolated influences of internal, external and anthropogenic

forcings to gain a comprehensive understanding of their respective relationships with

temperature extremes. However, in the climate system these forcings do not act in iso-

lation but coexist with the potential to amplify and dampen each other whilst indirectly

influencing temperature extremes through immeasurably complex relationships. Indeed,

the influence of each forcing needs to be assessed in light of the entire climate system.

Here we assess the differences between temperature indices considering influences from

internal, external and anthropogenic forcings.

4.5.1 Inter-decadal variability

The large spread between simulations for the Tmax indices (Figure 4.11) suggests that

these indices are heavily influenced by external forcings. The spread between forced

simulations of Tmin indices (Figure 4.12) is much narrower, suggesting these indices are

driven by internal variability rather than external forcings. Relative to coldest days, other

indices maintain relatively similar year-to-year variability.

Comparing the standard deviations of temperature indices across simulations, the inclu-

sion of solar forcing slightly increases the interannual variability of both Tmax and Tmin

indices. While volcanism increases the interannual variability of Tmax indices, it has little

or no influence on Tmin indices.
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Figure 4.11: (a) Hottest days anomalies and (b) Hottest nights anomalies. The
values shown are expressed as anomalies relative to the pre-industrial mean (1001 to
1850) for all forced simulations. Values for both plots are expressed in ◦C as 10 year
running means. Circles denote statistical significance at the 5% level.

Forcing(s) TXx TNx TXn TNn

O 0.47 0.41 1.14 0.55

OG 0.50 0.41 1.16 0.56

OGS 0.51 0.42 1.09 0.54

OGV 0.58 0.51 1.11 0.56

OGSV 0.58 0.48 1.20 0.56

Table 4.4: Standard deviations of areally averaged time series for each temperature
extreme index (Table 2.1) and model simulation (Table 2.2) from 1001 to 1850. Units
are ◦C.
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Figure 4.12: (a) Coldest days anomalies and (b) Coldest nights anomalies. The
values shown are expressed as anomalies relative to the pre-industrial mean (1001 to
1850) for all forced simulations. Values for both plots are expressed in ◦C as 10 year
running means. Circles denote statistical significance at the 5% level.

Hottest days

Hottest days matches the variability of coldest nights when forced with volcanism but

otherwise exhibits less relative year-to-year variability. I have found that volcanism

significantly influences hottest days and the extent of this influence is impacted upon

by solar forcing. Although centennial scale changes due to changes in solar irradiance

are observable, they are not statistically significant. From examination of the entire
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millennium, it is clear that anthropogenic GHGs significantly increase the intensity of

hottest days. Hottest days is also driven by internal climate variability (Section 4.1),

particularly ENSO. Niño 3 & 4 regions play key roles in the interannual variability of

hottest days.

Hottest nights

Hottest nights broadly behaves similarly to hottest days. However, hottest nights ex-

hibits less interannual variability, maintaining the least interannual variability across all

indices and simulations (Table 4.4). Relative to hottest days, hottest nights exhibits only

slightly less year-to-year variability, with and without the inclusion of volcanism. Rela-

tive to hottest days, hottest nights is similarly influenced by volcanism, changes to solar

irradiance, and increasing GHGs. However, hottest nights shows less breadth between

simulations, suggesting that this index is less influenced by external forcings (Figure 4.11).

Whilst it appears that the variability of hottest nights is at least to an extent related

to the variability of internal climate drivers, no relationships between defined dynamical

modes and this index were able to be identified.

Coldest days

Coldest days maintains the largest interannual variability and the least spread between

simulations (Figure 4.12). Standard deviations of Australia averaged time series shows

that the coldest days index exhibits by far the largest interannual variability relative to

other indices (Table 4.4). This agrees with the assessments of internal climate variables

(Section 4.1) and external drivers (Section 4.2) that coldest days either maintains a

complex relationship with external climate drivers or is primarily driven by internal

climate variability. The inter-decadal variability of coldest days is even more apparent
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within simulations without solar forcing (O and OG). Assessment of internal climate

drivers revealed that the interannual variability of coldest days is influenced by the IOD,

cloudiness as well as maintaining high correlations with other variables where defined

dynamical modes were not identified.

Coldest nights

Coldest nights exhibits the second highest interannual variability (Table 4.4) but is much

less variable than coldest days. Coldest nights is marginally influenced by volcanism

and this is dependent on solar irradiance. Internal climate dynamics such as IOD, SLP

and cloudiness appeared to marginally influence coldest nights. Relative to coldest days,

coldest nights exhibits a stronger signal from external forcings, but to a lesser degree

relative to Tmax indices. A similar comparison can be made with regard to internal

forcings.

4.5.2 Spatial variability of extremes over Australia

To assess spatial variability patterns, standard deviations (σ) of time series were calcu-

lated for each grid box between 1001 and 1850 for all forcings simulation (OGSV) and

orbital only (O; Figure 4.13). Both simulations give rise to almost identical spatial pat-

terns of year-to-year variability. By far, coldest days exhibits the highest year-to-year

variability producing a standard deviation of 2.6◦C in north western Australia. Relative

year-to-year variability for this index follows a decreasing gradient to south eastern Aus-

tralia (σ = 0.8◦C). Hottest days follows an increasing gradient from least year-to-year

variability in the west (σ = 0.8◦C) to largest year-to-year variability in the east (σ =

1.9◦C). Hottest nights follows an increasing gradient from the least year-to-year variabil-
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ity in the north (σ = 0.6◦C) to the most year-to-year variability in the south (σ = 2.1◦C).

Coldest nights, is the one index not to exhibit any strong spatial patterns for year-to-year

variability and has a standard deviation range of 0.5 to 1.7◦C. Across all indices central

Australia maintains moderate year-to-year variability.

Figure 4.13: The standard deviations (◦C) of time series calculated at each grid
point between 1001 and 1850 for forced simulations OGSV and O. the spatial distri-
bution and magnitude remain almost identical under other forced simulations.

Whilst it is not shown, other forced simulations (OG, OGS and OGV) give rise to similar

year-to-year variability. Thus, these spatial patterns are not influenced by external forcing

and the result of unforced variability.

Summary of spatial variability

Coldest days are most variable in north east Australia; hottest days in south eastern

Australia, and hottest nights in southern Australia. Coldest nights does not exhibit a

strong pattern but generally has the largest variability in northern Australia. These

spatial patterns persist regardless of external forcings (Figure 4.13).
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4.6 Summary of results

1. Internal modes of variability influence all temperature extremes to varying degrees.

Coldest days exhibits considerably larger interannual variability; also maintaining

the strongest relationships with internal modes of variability, relative to other in-

dices.

2. No statistically significant anomalies are associated with changes to solar irradi-

ance. Large and abrupt cooling occurs subsequently to volcanic eruptions. The

presence of solar forcing changes the influence volcanic eruptions have on temper-

ature extremes.

3. Anthropogenic greenhouse gases dominate temperature extremes during the indus-

trial period.

4. Each temperature index has its own pattern of spatial variability that persists

irrespective of external forcings.

5. The magnitude exhibited by external forcings, greenhouse gases and internal cli-

mate drivers is not necessarily proportional to the signal witnessed in temperature

extremes.
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Chapter 5

Discussion

5.1 External Drivers of temperature extremes

Few studies to date have comprehensively assessed the influence of solar or volcanic forc-

ings on temperature extremes. Here, I discuss these dynamical relationships in relation

to the literature, suggest improved methodologies and highlight areas that would benefit

from future research.

5.1.1 Volcanic eruptions

It is clear that the inclusion of volcanism in model simulations is required to reproduce

certain the temperature anomalies that have occurred over the last millennium (compare

simulation O, Figure 4.9 and simulation OGV, Figure 4.2b). The magnitude of the

volcanic signal is greatest in hottest nights followed by hottest days and coldest nights

(Figure 4.3). The magnitude of the signal evident in these three indices suggests a

possible seasonal response to volcanic eruptions. Seasonal variations have been found in
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NH assessments due to changes in circulation patterns but these relationships are strongly

regional dependent (Shindell et al., 2003; Shindell, 2004; Mann, 2007) and therefore may

not be applicable for the SH or Australia. However others have found seasonal variations

to lack significance (Crowley, 2000).

Few studies have assessed the seasonal influence of volcanic eruptions, particularly in

the SH, and no such work has assessed the impact on day or night time temperature

extremes. In this study, Australian cooling subsequent to volcanic eruptions is larger for

Tmax (summer) than Tmin (winter) extremes. Within the model, dispersal of volcanic

aerosols do not rely on circulation patterns because volcanic forcing is applied uniformly

across the globe (Phipps et al., 2012b). Whilst seasonal circulation patterns may still give

rise to differences between Tmax and Tmin responses within the model, it may also be due

to the internal climate dynamics driving individual indices. Within seasonal responses,

nights were more influenced than days. The temporary cooling of one to four years

subsequent to volcanic eruptions agrees with the results of other studies (e.g. Shindell,

2004).

Repetitive explosive volcanic eruptions appear to have an amplifying effect on temper-

ature extremes (Section 4.2). It is not only the magnitude but also the frequency of

volcanic eruptions that drive climate, and volcanoes that erupt in quick succession can

have an amplifying effect (Miller et al., 2012). In the absence of solar forcing, the eruption

of 1258 exhibits a similar response to Tambora (Figure 4.2b) even though 1258 produced

a larger radiative forcing (Figure 2.1). This may be due to several smaller eruptions

preceding Tambora (Miller et al., 2012), to self limiting effects of very large explosive

eruptions (Pinto et al., 1989) or to internal variability.
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5.1.2 Solar Irradiance

Here, no significant changes to temperature extremes were found during periods of anoma-

lous TSI (Section 4.2.3). The literature surrounding this issue is contentious as to whether

the relationship between TSI and temperature is large (e.g. Shindell et al., 2003; Servon-

nat et al., 2010), small (e.g. Wagner & Zorita, 2005) or complex (e.g. Rind, 2002; Mann,

2007). Solar forcing mechanisms operate on a wide range of time scales and interact with

many modes of internal variability that may amplify the forcing itself (Rind, 2002). For

this reason, understanding the extent of TSI anomalies is difficult, and this is reflected in

the literature where TSI anomalies are identified to be the driver of many varied mecha-

nisms. I propose that TSI variability is a contributing forcing in combination with other

external forcings and feedbacks within the climate system but in isolation does not have

a detectable impact upon temperature extremes.

5.1.3 Dynamic duo volcanic and solar forcings

The results of this study agree with the well-established finding that volcanism and TSI

anomalies are dominant drivers of climate over the pre-industrial component of the last

millennium (e.g. Crowley, 2000; Bauer, 2003; Mann, 2007). Whilst numerous studies

have focused on the NH, Phipps et al. (2012a) compare both hemispheres and find that

the impact of solar and volcanic forcings is stronger in the SH.

Use of composites (e.g. Figure 4.7) may result in certain eruptions or TSI anomalies

masking the signal of others. However, used in conjunction with assessments of individual

volcanic simulations, composites are a useful tool. The influence of volcanic eruptions

on all temperature extreme indices are temporally extended with the inclusion of solar

forcing (Figure 4.7). The results of this study indicate volcanism plays a larger role,
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agreeing with Wagner & Zorita (2005).

To more robustly identify relationships between TSI variability and volcanism on tem-

perature extremes, it would be beneficial to construct composites of explosive eruptions

during periods of high and low TSI anomalies. As the impact of explosive eruptions is

short-lived, assessment of anomalous high and low TSI periods that coincide with peri-

ods of high and low volcanic activity would beneficially allow study of an extended time

period.

5.1.4 Anthropogenic Forcing

Within the model, it is necessary to include anthropogenic GHG to successfully produce

the changes in climate extremes observed over the industrial period. The model agrees

with observed trends in finding that coldest nights exhibit the largest increasing trends,

followed by coldest days, hottest nights and hottest days, over the second half of the

twentieth century. As model evaluation was performed over the industrial period, it

is not possible to say whether the model’s tendency to over/underestimate the trend

and magnitude of extreme indices represents deficiencies in the model’s physics or in the

forcings applied to the model. Extrapolating the model’s tendency to over/underestimate

trends to the entire twentieth century whilst considering simulation OG, suggests hottest

nights is most influenced, followed by hottest days, coldest days and coldest nights.

This study finds extreme indices to respond differently to changes in GHG relative to

other external forcings. There is a relationship between increasing concentrations of GHG

and the amount of moisture in the atmosphere. Atmospheric moisture and cloudiness

influence the planetary energy budget by similar mechanisms, and therefore act similarly

as determinants of temperature. The signal from external forcings relative to internal
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climate drivers (or vice versa) also indicates relative susceptibility of an extreme index

to GHG.

The results of this study find coldest nights receives little influence from cloudiness or

external forcings and accordingly receive little influence from anthropogenic GHG. Hottest

days are not influenced by cloudiness but its variability appears to be driven by external

forcings. Accordingly hottest days are reasonably influenced by changes in anthropogenic

GHG. Hottest nights and coldest days are found to be cloud influenced indices. Coldest

days exhibits a strong signal from anthropogenic GHG relative to its response to other

external forcings and this is likely due to the similar physical mechanisms that relate

GHG and cloudiness to surface temperature. Hottest nights is most impacted upon by

anthropogenic GHG, followed by hottest days, coldest days and coldest nights. Thus

the physical mechanisms of natural variability that drive temperature extremes can be

extrapolated to understand why certain indices are more or less influenced by changes to

external forcings.

The influence of increasing GHG on internal variability was not assessed in this study as

the analysis of internal variability was kept to the pre-industrial period only. However,

SLP, cloudiness and SST will all change in a warming world. Moisture content will

increase, SST will rise, and storm tracks in the SH will shift poleward (Bengtsson et al.,

2006). These changes are relevant for all indices assessed here. Note that this analysis

looks at the influence of greenhouse gases in isolation from other forcings. The model does

not consider anthropogenically induced changes to tropospheric aerosols, stratospheric

ozone, vegetation or land cover which can also influence temperature extremes (Avila

et al., 2012).
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5.2 Variability of Australian temperature extremes

Whilst this study did not focus extensively on varying modes of natural variability, it

did assess some of the most significant climate variables (SST, SLP, cloudiness) that may

drive temperature extremes. Thus, findings from this present study indicate the degree

to which natural variability drives temperature extremes in Australia. Here I discuss

the variability of Australian temperature extremes over the millennium in light of these

internal drivers.

Internal variability is thought to be influenced by external forcings to at least some extent,

though this relationship is somewhat unclear (Rind, 2002; Mann & Cane, 2005; D’Arrigo,

2005; Phipps & Brown, 2010). It is likely that modes of internal variability and extensive

feedback loops determine down to smaller and smaller scales the degree to which external

forcings drive temperature extremes. The assessments of internal variability here, use

Australian averages. Therefore, certain climatic regions within Australia may mask the

signal of others (e.g. arid vs. temperate zone). In the future, it would be of particular

interest to assess the spatial distribution of these relationships. Furthermore, it is likely

that the relative influence of internal modes of variability on temperature indices is

specific to Australia. Previous works have identified strong relationships between ENSO

and Australian temperature extremes (Kenyon & Hegerl, 2008; Alexander et al., 2009;

Arblaster & Alexander, 2012). In comparison the ENSO relationships identified in this

study are relatively weak. This study correlated temperature extremes against seasonal

SST for each year during the pre-industrial period, irrespective of whether ENSO events

occurred and their strength. The prevalence of an ENSO signal may indeed suggest a

strong relationship with temperature extremes.

Hottest days displays a high correlation with ENSO patterns; particularly the Niño 3 and

Niño 4 regions. ENSO is known to have a strong influence on Australian climate and
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temperature variability. Hottest days is negatively correlated with cloudiness but not to

the same degree as coldest days. This is expected as increasing cloudiness proportionally

increases the extremity of coldest days. Many variables associated with cloudiness; for

example, density, thickness, height provide scope for large temporal and spatial variability

of cloudiness and therefore, highly variable impacts. This study has found a strong

relationship between the variability of cloudiness and coldest days, which is characterised

by much larger interannual variability relative to the other indices. Hottest days will

generally occur on days with no clouds, therefore the variability of this index is unlikely

to be related.

Cloudiness dampens day time temperatures (coldest days) more than it warms night

time temperatures (emphhottest nights; Dai et al., 1999). Dai et al. (1999) attributed

decreases in diurnal temperature range to increasing daytime cloudiness over the latter

half of the twentieth century. Throughout this study coldest days has stood out from the

other indices. It has high interannual variability and exhibits a weak response relative

to other indices when forced with external drivers. Whilst the model over-estimated the

interannual variability of coldest days, observations also find it to be the most variable

index relative to the other indices. The signal from internal climate drivers is strong

relative to external forcings for coldest days. This relationship therefore limits the signal

of all external forcings relative to other indices.

Coldest days has strong correlations with SLP, SST and cloudiness. Coldest days is the

only temperature index to exhibit strong correlations with all three variables, and is

thus largely influenced by internal climate drivers. Correlations with IOD and cloudiness

account for half the interannual variability exhibited by coldest days. Strong positive

(northeast Indian Ocean) and negative (southeast Indian Ocean) correlations between

coldest days and SLP may be related to atmospheric blocking (Matsueda, 2011; Bengtsson

et al., 2006) and/or the Australian Monsoon (Risbey et al., 2009).
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Many modes of internal variability act on smaller timescales than external forcings.

Modes of internal variability respond to external drivers and therefore, exhibit indirect

influences on the climate that may be even larger than the external forcings themselves.

Whilst the model overestimates the intensity of hottest nights, it only slightly underes-

timates its trend and interannual variability relative to observations over 1957 to 2000.

It does not have a strong or clear relationship with ENSO, PDO or IOD, however it

does have a positive correlation with cloudiness. While hottest nights does not exhibit

a correlation with ENSO through SST, the pattern of correlation with SLP indicates a

relationship with an easterly wind across Australia. Lack of a strong ENSO signal may

be due to varying regional responses within Australia or deficiencies in the simulated

ENSO.

It is likely that night time convection has a strong influence on coastal temperatures.

However, assessment of Australian averages may mask the influence of night time con-

vection on temperature extremes. Time constraints did not allow assessment of spatially

distributed correlations, which would aid understanding of regional processes within Aus-

tralia; particularly for hottest nights but for all extreme temperature indices assessed

here.

The net effect of cloudiness on maximum night time temperatures is generally small

(Kenyon & Hegerl, 2008), agreeing with the findings of this study. Both cloudiness and

GHG influence temperature extremes in similar ways by altering the surface radiation

balance. Hottest nights is influenced to a large degree by GHG concentrations but not

cloudiness. This may indicate that cloudiness is not nearly as variable during the night

as it is during the day. It appears that the variability of Tmax indices are more broadly

influenced by external forcings and less driven by internal variability relative to other

indices. Throughout this study external forcings have been consistently identified to
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drive hottest nights.

Coldest nights do not exhibit strong signals from either external or internal drivers. It

has slightly higher interannual variability and is less influenced by external forcings than

Tmax indices. Coldest nights receives more influence from internal variability than Tmax

indices, but less than coldest days. One reason for this may be the lack of correlation

between coldest nights and cloudiness, which seems to be a large driver of variability for

coldest days. However, this does not explain the weak signal exhibited by coldest nights

when forced with changes in external forcings.

The spatial variability exhibited by each extreme index persists regardless of external

forcing. Surprisingly, there is no consistent correlation between areas of high or low

variability being impacted upon first, last, most or least when forced with anomalous

external drivers.

5.3 Other limitations of this study

It should be emphasised that this study is based on a single climate model and so results

from this study may be biased by deficiencies in the model physics or omitted forcings.

Reconstructions used to force the model are derived from proxies which are accompanied

by uncertainties (Mann et al., 2008). Only four temperature indices were assessed and

these indices looked at the most extreme hottest and coldest days and nights of the year.

Therefore, they may not be accurate representations of seasonal or annual temperatures.
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Chapter 6

Conclusions and future work

6.1 Conclusions

Before understanding how entities act together when combined, it is necessary to first

understand their individual behaviour. This study has attempted to do this from two

angles. Firstly, it has attempted to understand the behaviour of external forcings (solar,

volcanic and anthropogenic) and secondly it has attempted to understand the behaviours

of four different indices of extreme temperature. This understanding can aid projections

of how the climate may be influenced in the future and what impacts can be expected

from anomalous external forcings.

Overall, the degree to which external drivers influence temperature extremes is not nec-

essarily proportional to the strength of forcing. Thus, the relationship is not simple or

direct and is also dependent on internal variability. The reason as to why respective

mechanisms influence only particular indices is unique to each index and is dependent

on many feedback relationships. Thus, the degree to which temperature extremes are
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influenced by external forcings is dependent on the variability and strength of both inter-

nal and external forcings and also feedback loops which include the temperature extreme

indices themselves.

1. Internal modes of variability influence all temperature extremes to varying degrees.

Coldest days exhibits the largest interannual variability of all forcings and this is

driven by internal variability. The main reason for this is the large influence of

cloudiness on this index.

2. No statistically significant anomalies are associated with changes to solar irradi-

ance. Large and abrupt cooling occurs subsequently to volcanic eruptions. Solar

minima enhance Tmax cooling and solar maxima dampen anomalous Tmin cooling

in combination with volcanic eruptions.

3. Over the twentieth century, GHG concentrations became an increasingly dominant

driver of temperature extremes.

4. Tmax indices are more influenced by changes to external forcings relative to Tmin

indices.

6.2 Future work

This study has highlighted important relationships between temperature extremes, ex-

ternal forcings and modes of internal variability. The conclusions of this study highlight

key relationships that would benefit from further research.

The study has focused on the relationship between external forcings and temperature

extremes, but it has become apparent that this relationship can only be explained in
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collaboration with internal variability. Therefore, understanding the relationship between

external forcing and internal modes of variability is a significant stepping stone on the

path to robustly understanding the behaviour of temperature extremes. Formal detection

and attribution studies provide a valuable tool. Assessment of ensembles rather than

individual simulations would better capture the influence of natural variability. Of course

there is potential to expand analysis to other regions and also further back in time.

Assessment of other global and regional climate models, in collaboration with proxies

would aid analysis of natural variability and climate change over past millennia. The

quality of proxy records should denote appropriate time periods for assessment.

The ability to apply knowledge comes not only from understanding which mechanisms

drive indices but how they drive them. This knowledge will allow projection of future

changes and the extrapolation of identified physical relationships to other phenomena.

Analysis of a more extensive set of indices, including precipitation would increase under-

standing of the climate system. Assessment of apparent temperature indices would be of

benefit to policy makers and those interested in adapting to and mitigating current and

future climate change.
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