
1. Introduction
It is a unique property of orbital forcing that it can be reconstructed over very long timescales with almost 
complete certainty, as the variation of the orbital parameters is mathematically well understood. Daily in-
solation can be precisely calculated on timescales of millions of years (Laskar, 1986, 1988, 2004). However, 
its influence on the climate system is less certain. The idea that the variation of the orbital parameters influ-
ences daily insolation and thus long-term climatic change goes back to the pioneering work of Milankovitch 
(1941). Since then, orbital forcing has been successfully detected in proxy records on multimillennial times-
cales and has been attributed to be the cause of glaciation cycles (e.g. Hays et al., 1976; Imbrie et al., 1992). 
Many other studies have confirmed Milankovitch's theory (see also Alley et al., 2002; Kawamura et al., 2007; 
Parrenin & Paillard, 2003 Raymo, 1997).

Comparison of model simulations and proxy records have also confirmed that orbital forcing was one of the 
key drivers of climatic change during the mid to late Holocene (Wanner et al., 2008). Over the last millennium, 
volcanic forcing was the main driver of natural temperature variability on multidecadal timescales (Lücke 
et al., 2019; Masson-Delmotte et al., 2013; Neukom et al., 2019; Otto-Bliesner et al., 2016; Schurer, Hegerl, et al. 
2013). However, some discrepancies between models and proxies remain. For example climate models seem to 
underestimate the amplitude of multicentennial variability compared to proxy reconstructions, which could 
result, for example from model errors (Ljungqvist et al., 2019) or proxy biases (Lücke et al., 2019).

Studies of preindustrial last millennium temperature have repeatedly found negative millennial trends in 
high latitude proxy data, which coincide with a negative insolation trend caused by orbital forcing. For 

Abstract Insolation changes caused by the axial precession induce millennial trends in last 
millennium temperature, varying with season and latitude. A characteristic seasonal trend pattern can 
be detected in both insolation and modeled surface temperature response. In the extratropical Northern 
Hemisphere, the maximum insolation trend occurs around April/May, while the minimum trend occurs 
between July and September. The temperature trend lags behind insolation trend by around a month. 
Hence orbital forcing potentially affects long-term trends in proxy data, which are often sensitive to a 
distinct seasonal window. We find that tree-ring reconstructions based on early growing season dominated 
records show different millennial trends from those for late summer dominated proxies. The differential 
response is similar to that seen in pseudo proxy reconstructions when considering proxy seasonality. This 
suggests that orbital forcing has influenced long-term trends in climate proxies. It is therefore vital to use 
seasonally homogeneous data for reconstructing multicentennial variability.

Plain Language Summary The Earth's axis spins like a slightly wobbly gyroscope, with 
one spin taking around 24,000 years. Depending on the phase of the spin, more or less sunlight comes in 
during the different seasons, impacting the Earth's climate. This is orbital forcing. Analyzing temperature 
data produced by global climate models, we found that orbital forcing causes a distinct seasonal trend 
pattern over the last millennium, which should influence global and regional climate. These patterns are 
very different from other natural climate forcings-like volcanic eruptions or changes of the Sun's energy 
output. We have also found evidence of orbital forcing in reconstructions of past climate using natural 
climate archives such as tree rings and other climate proxies. These findings can potentially resolve 
previous inconsistencies in long-term climate change found in proxy reconstructions and climate model 
output.
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example, Kaufman et al. (2009) found a pervasive cooling in high-latitude proxy reconstructions of summer 
temperature and inferred that it was caused by orbital forcing. McKay & Kaufman (2014) obtained an even 
higher negative trend in reconstructed annual temperature of the same area, although they questioned the 
suitability of their reconstruction to determine long-term variability. Esper et al. (2012) found consistent 
trends around −0.2 to −0.3 K/ky in Scandinavian latewood density (late summer) proxies, in agreement 
with model data, and attributed these to orbital forcing. However, they could not find similar trends in data 
based on ring width, and suggested that ring width data could be limited in preserving long-term trends. 
Phipps et al. (2013) found that simulations which are only subjected to orbital forcing could not replicate 
the long-term trends previously observed by Esper et al. (2012) and Kaufman et al. (2009) for global annual 
mean temperature. They suggest that seasonal or geographical biases in proxy reconstructions could poten-
tially be responsible for the larger trends, as proxy reconstructions tend to be more representative of higher 
latitudes and some records are biased toward summer. They obtained stronger long-term trends in their 
simulations, when taking these biases into account.

Klippel et al. (2020) investigated the magnitude of the trend displayed by proxy records and their inherent 
large-scale properties including latitude (mid vs. high) or seasonal sensitivity (summer vs. annual tempera-
ture), but found no significant relationship. However, they found that millennial trends in ice cores, marine, 
and lake sediments were stronger than in tree-rings. This discrepancy between proxy data and model simu-
lations, but also between different types of proxy data, has so far remained unresolved.

While authors have compared mainly tree-ring width against latewood density data, more specific charac-
teristics inherent to the data sources have not been distinguished. In this study, we attempt to group proxy 
data according to their seasonal sensitivity to find an explanation for the aforementioned discrepancies. 
The exact seasonality of large-scale proxy reconstructions is often difficult to establish, as data sources with 
different monthly sensitivity are mixed and the exact seasonal sensitivity of an individual record is uncer-
tain. Most reconstructions of past surface temperatures have been calibrated to either summer (e.g. An-
chukaitis et al., 2017; Briffa, 2000; Kaufman et al., 2009; Schneider et al., 2015; Wilson et al., 2016) or annual 
(e.g. D'Arrigo et al., 2006; Frank et al., 2007; McKay & Kaufman, 2014; Neukom et al., 2019) instrumental 
temperature data. Esper et al. (2005) found that the target seasonality plays a role for the amplitude of the 
reconstruction and that amplitudes are higher when scaling to annual temperature compared to summer 
temperatures. The decreased amplitude for summer could be explained by early instrumental biases (Böhm 
et al., 2010). Several studies have suggested that reconstructions of seasonal versus annual temperatures 
are otherwise statistically indistinguishable on multidecadal and longer timescales (Cook et al., 2004; Es-
per, 2002; D'Arrigo et al., 2006). However, given that tree growth is related to growing season conditions, it 
was recommended to calibrate tree-ring reconstructions to summer temperature (Wilson et al., 2007, 2016).

In this study, we investigate the effect of the seasonality of insolation trends due to orbital forcing on sim-
ulated and reconstructed temperature over the preindustrial last millennium (AD 850–1850). We find that 
orbital forcing induces a characteristic seasonal trend pattern in climate models, which lags behind the 
insolation by around a month. In contrast, negative trends arising from other forcings are fairly constant 
throughout the whole year. A similar seasonal trend pattern is found in proxy reconstructions when ac-
counting for their different seasonal sensitivity, which could be explained by orbital forcing. Our results 
could not only resolve certain model-proxy discrepancies, but also provide an explanation for discrepancies 
between different proxy types, such as ring width and density data.

2. Data
2.1. Orbital Data

We use the numerical solutions for the eccentricity e, the climatic precession ψ, and the obliquity ϵ and inso-
lation quantities provided by Laskar et al. (2004). The insolation is given as the monthly mean on a longitu-
dinal grid of 5° resolution. To first order, e and ϵ vary at periods of around 400,000 and 441,000 years (Berger 
& Loutre, 1991) and are in decline over the entire Holocene (Figure S1). Given their large periodicity, e can 
be assumed to be approximately constant for our analysis. ϵ is responsible for a small decrease in global 
annual insolation (around 0.01 W  m−2), and introduces a zonal dependence to the millennial insolation 
trend. In contrast, ψ induces major changes in seasonal insolation on shorter timescales, with a periodicity 
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of around 24,000 years to first order (Berger & Loutre, 1991). The global seasonal insolation exhibits the 
same periodicity as the precession, following the precession with different phase shifts.

2.2. Model Data

For the multimodel mean, we use model simulations from six members of the Climate Model Intercompar-
ison Project Phase 5 (CMIP5, [Taylor et al., 2012]), all covering AD 850–2005. We include CCSM4 (Landrum 
et al., 2013), CESM-LME (Otto-Bliesner et al., 2016), CSIRO-Mk3L-1–2 (Phipps et al., 2011, 2012), GISS-
E2-R (Schmidt et al., 2014), MPI-ESM-P (Giorgetta et al., 2013), IPSL-CM5A-LR (Dufresne et al., 2013), and 
HadCM3 (Schurer, Tett, & Hegerl, 2014). All simulations include volcanic, solar, orbital, and greenhouse gas 
forcing as prescribed by the Paleoclimate Model Intercomparison Project Phase 3 (PMIP3) (Braconnot et al., 
2012; Schmidt et al., 2011, 2012). All but CSIRO also include land-use changes. Simulations from CCSM4, 
GISS, and IPSL show relatively strong long-term drifts at high latitudes. Thus, we subtract the associated 
CMIP5 piControl simulation for each model before we calculate long-term trends. All simulations show 
consistent trend patterns when accounting for those drifts (Figure S2).

We compare these results with single forcing simulations from the CESM-LME. The simulations use a ver-
sion of CESM-CAM5_CN (1.9 × 2.5_gx1v6), with a resolution of ∼2° in atmosphere and land components 
and ∼1° resolution in ocean and sea ice components. Besides the 13 simulations including all forcings, we 
use two unforced control simulations to calculate the model drift and several experiments including single 
forcings. Given that the drift is very small, we do not subtract it from the simulation before calculating long-
term trends. We compare long-term trends from orbital forcing only with the influence of other forcings, 
calculated as the sum of volcanic, solar, greenhouse gas, and land use/land cover changes (three simula-
tions for each forcing).

2.3. Instrumental Data

For the calibration of the proxy reconstructions, we use CRUTEM4 (Osborn & Jones, 2014), a gridded data 
set of global historical near-surface air temperature anomalies over land with a resolution of 5° from 1850 to 
2015. To avoid biases from insufficient instrumental shielding (Böhm et al., 2010) and poor geographic cov-
erage, we follow Wilson et al. (2016) and exclude data prior to 1880 for calibrating mid-latitudinal data and 
prior to 1900 for high-latitudinal data. Uncertainty may still arise from varying coverage even for later peri-
ods, which decreases toward higher latitudes and is generally higher in Western Europe and North America.

2.4. Proxy Data

2.4.1. Mid Latitudes

In order to reconstruct mid latitudinal temperatures, we use data provided by the Northern Hemisphere 
Tree-Ring Network Development (N-TREND) consortium as published by Wilson et  al.  (2016) and An-
chukaitis et al. (2017), containing carefully selected high quality tree-ring chronologies and local reconstruc-
tions. It includes 54 tree-ring records, from which 11 are derived from ring-width (TRW) measurements, 18 
are derived from maximum latewood density (MXD) and 25 are mixed records (MIX). The latter combine 
reconstructions derived from different measurement methods, such as TRW, MXD, and blue intensity (BI) 
data. MXD and BI provide similar information on relative wood density (see Björklund et al. (2014); Rydval 
et al. (2014) for more information). The records vary in length, starting between AD 750 and 1710. Each 
record has an individual optimal target season, reflecting the trees' growing season, identified by Wilson 
et al. (2016), correlating the individual records against the local CRU TS 3.2 (Harris et al., 2014) mean tem-
perature grid. The target seasons differ widely, ranging from a single month to several (Figures 1a–1c). We 
classify the data into two groups: early summer (sensitive up to July) and late summer (sensitive from July 
onwards). Early summer includes only ring-width and mixed data, while late summer includes width, den-
sity and mixed proxies. Given that total ring-width is dominated by earlywood growth, and latewood density 
type records use only the final cells of the latewood formation (Björklund et al., 2017), our classification is 
sensible also from a biological point of view.
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2.4.2. High Latitudes

We use multiproxy data from the revised PAGES (Past Global Changes) Arctic 2k data set (v1.1.1, McKay & 
Kaufman (2014)), containing selected and updated records from the first PAGES Arctic 2k database (2k Con-
sortium, 2013). In order to replicate the reconstruction method used for mid latitudinal data, we include only 
annually resolved data extending into the twentieth century, restricting the data set to 32 proxy records (12 
ice cores, 13 tree rings, and 7 lake sediments). We refer to this data as PAGES Arctic 2k*. The data set overlaps 
with a few tree-ring records from N-TREND, which in some cases contains updated chronologies from PAG-
ES. Based on the seasonal sensitivity stated in the original publications, the data includes 18 summer proxies 
(JJA), 11 annual, 2 winter (DJF), and 1 February to August proxy. Besides the complete data set, we create 
an additional seasonally homogeneous subset including all summer records (summer only) (Figures 1d–1f).

3. Hemispheric Temperature from Proxy and Climate Model Data
3.1. Proxy Reconstruction Method

We create an ensemble of hemispheric reconstructions for land surface temperature as in Lücke et al. (2019), 
based on iterative nesting and scaling to instrumental data (D'Arrigo et al., 2006; Wilson et al., 2016, 2007). 
We target the mid-latitudinal band between 40 and 75° N for N-TREND, and 60–85°N for PAGES Arctic 
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Figure 1. Spatial distribution and seasonal sensitivity of proxy records (top: N-TREND data set [Anchukaitis et al., 2017; Wilson et al., 2016], bottom: 
annually resolved PAGES Arctic 2k records [McKay & Kaufman, 2014]). (a), (b): full data sets, (c)–(e): seasonally homogeneous subsets. The pie charts denote 
the seasonal sensitivity of each individual proxy archive as identified by the original publications. On the top of each spatial plot, we show the cumulative 
seasonality of the respective data sets. The background shading denotes the local temperature trend (AD 850–1850) of the CESM-LME ensemble mean during 
the target season of each data set.

(a)

(b)

(c)

(d)

(e)
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2k*. All subsets of N-TREND are calibrated over the period 1880–1988, maximizing data availability of 
both proxy data and observations. Arctic 2k* subsets are calibrated between 1900 and 1967, reflecting the 
decreased data availability at higher latitudes.

To gain an estimate of calibration and coverage uncertainty, we vary the calibration period and bootstrap the 
data set to eventually gain a reconstruction ensemble of 100 ensemble members per data set. In addition to 
the full calibration period, we split the calibration period for N-TREND into three windows of each 60, 70, 
and 80 years (40, 50, and 60 for Arctic 2k*). Each reconstruction is again bootstrapped by removing in turn 
a record from the data set (see Appendix A1 for more detail). For each individual data set, we choose the 
calibration target season to match the cumulative seasonal sensitivity of the included proxy records.

3.2. Hemispheric Temperature from Climate Model Data

We produce hemispheric timeseries of climate model output using three different methods. First, we use 
the weighted average of all model grid points within the latitudinal band and within the target season of 
the proxy reconstructions (CESM full band). We additionally generate a timeseries from the model data 
sampled at the grid points closest to the proxy locations within the target season of the proxy reconstruc-
tion (CESM proxy location). The resulting timeseries closely resembles the full band and uses seasonally 
homogeneous data. Last, we generate a pseudo proxy reconstruction (PPR), mimicking the heterogeneous 
seasonal composition of the proxy data and its reconstruction method. For each proxy record, we extract 
monthly climate model data at the grid point closest to its location, limited to the period at which proxy data 
is available. We use the monthly average within each proxy record's seasonal sensitivity window. Thus, we 
obtain a timeseries of model data for each proxy record that reproduces its seasonal characteristics. To con-
centrate on the aspect of seasonal sensitivity, we have not added noise to the pseudo proxy records, making 
them perfect representations of modeled climate variability. We replicate the proxy reconstruction method 
with the resulting pseudo proxy data sets for each model ensemble member, producing a total of 13 × 100 
PPR's for each proxy target data set (see Appendix A2 for more detail).

4. Orbital Forcing and Millennial Trend Patterns in Climate Model Data
The change of the orbital parameters over time induces an insolation trend, which varies with month and 
latitude (Figure 2). The monthly insolation trend takes the form of a propagating wave, moving forward in 
the year over the course of the Holocene (top). The signal is strongly zonally dependent, such that at high 
latitudes maximum and minimum trend are seasonally close together at all periods. During the last millen-
nium, high northern latitudes are expected to experience an increase in insolation during April and May 
while insolation decreases in July and August. Thus, the magnitude of the trend changes rapidly between 
May and August. A similar seasonal variation in trends occurs at high southern latitudes. This finding is of 
particular importance, as proxy data sets are often biased toward both higher latitudes and summer temper-
ature. Thus they directly encompass this highly variable range, as was pointed out by Phipps et al. (2013). 
This indicates that even small differences in seasonal sensitivity could lead to notable differences between 
temperature reconstructions.

We find a similar sinusoidal trend signal in globally averaged surface temperature of the last millennium 
produced by all-forced climate simulations (Figures 3a and 3b). This signal is found in all individual climate 
models used for our analysis (Figure S3) as well as in CESM simulations including orbital forcing only (Fig-
ure 3c). In contrast, other forcings create a negative trend signal, which is approximately constant through-
out the year (Figure 3d). The orbital only simulations are the only ones which display a warming trend, 
which coincides roughly with the period and region of zero trend in the all-forced simulations. Hence the 
detection of negative millennial temperature trends at high latitudes alone is not sufficient as attribution to 
orbital forcing as these could be caused by a number of different forcings. Therefore, if we wish to attribute 
millennial trends to orbital forcing it is the relative seasonal pattern, which is the most important pattern.

Furthermore, we observe that the temperature lags behind the insolation by around one to two months. 
This can be explained by the thermal inertia due to the high heat capacity of the ocean mixed layer, causing 
a delayed response of the surface temperature to insolation (Prescott & Collins, 1951). This mechanism 
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also explains the larger amplitude of the seasonal trend cycle of land only data. We also note that there is 
a slight asymmetry in the lag between the minimum and maximum peak trends. A number of seasonally 
and geographically dependent mechanisms could cause an asymmetry like this (Donohoe et al., 2020). For 
example, the larger depth of the mixed layer in winter could lead to an increased heat capacity and thus a 
slower temperature increase in early spring compared to late summer (Bathen, 1972). Other mechanisms 
could include sea ice cover, which could induce positive or negative feedbacks depending on the season and 
the sign of the insolation trend (Fischer & Jungclaus, 2011).

The lag of the temperature response behind the forcing has important implications for proxy record trends, 
which often respond to temperature changes during a narrow seasonal window. In the case of mid-latitudi-
nal tree-ring data, negative temperature trends would only influence proxies, which are sensitive to late sum-
mer temperatures (solid box, Figure 3). For higher latitude data, the lag would particularly impact summer 
proxies (dashed box). This seasonally lagged response to the forcing trend is a key finding of the study and 
could have important implications, particularly for previous studies, which have compared insolation trends 
instantaneously with trends found in proxy records (Esper, 2002; Kaufman et al., 2009; Klippel et al., 2020).

5. Millennial Trends in Proxy Reconstructions
We calculate the millennial trends up to AD 1850 in our proxy reconstruction ensembles, varying the start 
year of the fit to account for changing proxy availability and compared the results with data from CESM 
simulations (Figures 4a and 4c). In the N-TREND data, we observe a weaker trend for early summer and 
a stronger trend for late summer data, a pattern which is replicated by the model data. We conclude that 
the trend pattern in the latter could have been caused by orbital forcing (Figure 4b), as no other forcings 
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Figure 2. Insolation trend during the Holocene (a–c) and the last millennium (d). The right panel shows zonally resolved annually averaged insolation (e). The 
zonal and seasonal sensitivity range of N-TREND (Arctic 2k* summer proxies) are shown as a solid (dashed) box in (d).

(a) (b) (c) (d)

(e)
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produce a seasonal difference (see Section 4). The complete proxy data set shows a stronger trend than the 
seasonal subsets, which is not replicated by the equivalent model data. This could be a result of the data 
availability or reconstruction method, as the PPR does not conserve the trend difference between late sum-
mer and all summer, as observed in the model data. The PAGES Arctic 2k* data are slightly less conclusive. 
We observe a difference in trend between the complete data set and the summer only data. However, there 
is no clear orbital forcing pattern detectable in the model data for JJA versus annual temperature. While 
we expect the trend to be weaker in summer due to the positive orbital forcing, no clear signal can be found 
when comparing JJA and annual data (Figure 4d) and the model trends overlap widely. There is, however, 
a significant difference in trend in the proxy reconstruction. While the trend of the summer reconstruction 
is well in line with the model results, the trend in the complete data set, calibrated to annual data, produces 
a much stronger trend than found in the model. This could potentially be a result of data quality or availa-
bility, remaining seasonal sensitivity in annually calibrated data or the reconstruction method (compare the 
slightly inflated trends in the PPR).

6. Discussion and Conclusion
Our results from comparing patterns in seasonally restricted proxy reconstructions are promising for at-
tributing seasonal trends to orbital forcing. However, both magnitude and relative difference of the trends 
found in model data and proxy reconstructions are subject to various uncertainties, which may have influ-
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Figure 3. Temperature trends in simulations of last millennium climate (AD 850–1850). (a) Multimodel mean of six climate models minus their control 
simulation. (b)–(e) Ensemble mean of several CESM-LME experiments. Top: seasonal evolution of the global mean temperature trend of land and sea (solid) 
and land only (dashed) model data. The millennial insolation trend is included as a red line in the top panels and as a red contour at ±2.5 W/m2/ky (solid: 
positive, dashed: negative forcing). The solid (dotted) black box shows the seasonal and zonal sensitivity range of N-TREND (Arctic 2k* summer) proxies.

(a) (b) (c) (d) (e)
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enced our results. In the case of the models this includes, for example, model errors and uncertainties in 
the forced response and internal variability. However, all climate models agree well on the magnitude of the 
cooling trend as well as the sinusoidal seasonal trend pattern (Figures S6 and S7). Small differences exist 
regarding the phase shift between insolation and temperature trend, but the models roughly agree on a lag 
of one month. This robustness of the model results provides a strong theoretical basis for a clear seasonal 
fingerprint of orbital forcing over the last millennium, which we should expect to see in proxy temperature 
records over this period.

In the case of the proxy results, we cannot exclude the possibility that the trend pattern in the proxy data is 
caused by methodological or spectral proxy biases. Methodological biases could arise from the calibration, 
for example, weaker correlation with instrumental data could suppress the trend (which could be an issue 
in particular for N-TREND early summer data), but also from detrending methods. It is known that certain 
detrending methods do not preserve low-frequency variability (Melvin et al., 2012), which could induce a 
flat bias in the reconstruction. This could in particular influence N-TREND late summer (includes two such 
records: IDA, KOL, see Table S1), but also early summer (also includes IDA). On the other hand, trends 
could also be overestimated following detrending – a known issue for at least one record (QUEw) included 
in N-TREND all and late summer (Anchukaitis et al. (2017)). Furthermore, spectral biases inherent to the 
proxy data could arise from biological memory processes and overestimate the trend (Lücke et al., 2019). We 
also cannot exclude the possibility that spectral differences exist between ring-width and latewood density 
as suggested by Esper et al. (2012), and that our results simply express the characteristics associated with 
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Figure 4. Trends of proxy reconstructions and CESM data up to AD 1850, with varying start year. (a), (c): Reconstructions compared to the model response at 
proxy locations and the pseudo proxy reconstruction, including all forcings. (b), (d): Model results including orbital forcing only and other forcings. Solid line: 
median, shading: 60th to 95th percentiles.

(a) (b)

(d)(c)
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these datatypes. Limited data availability of the seasonal data sets and potential data quality issues, as well 
as uncertainties in the seasonal sensitivity could further reduce confidence.

The interpretation of the results is increasingly complicated for inhomogeneous proxy data sets. We notice 
that for both the N-TREND and especially for the PAGES data set, the trend of the reconstruction including 
all data differs more from the model than for the seasonally homogeneous data subsets. This applies in 
particular to the PAGES data set, which includes multiproxy data whose seasonal sensitivity vary strongly. 
While it is thought that ice-cores and marine/lake sediments may be better than tree rings at capturing 
low-frequency variability (Esper et al., 2004), the summer reconstruction (tree-rings and lake sediments 
only) seems to be more in line with the model results. This could reflect how different seasonal proxy 
characteristics complicate the interpretation of results from multiproxy data, and accordingly decrease our 
confidence in the results.

We conclude that orbital forcing has likely played a key role in long-term seasonal forcing during the last 
millennium. While other forcings cause negative millennial temperature trends throughout the year, orbital 
forcing is the only one inducing a characteristic seasonal fingerprint that may lead to differential millennial 
cooling across seasons. Thus, negative trends in regional high latitude summer proxy data alone cannot be 
attributed to orbital forcings as other forcings may also cause negative trends during that time. The trends 
detected in modeled surface temperature lag behind insolation trends by around a month. Since the period 
of tree-ring formation encompasses both months of positive and negative orbital trends, trends in tree-ring 
data will likely depend on their specific seasonal sensitivity. It is therefore critical when interpreting long-
term trends in proxy reconstructions to consider the specific seasonal sensitivity of the individual proxy 
records as well as the lagged relationship between the forcing and the temperature response.

Our analysis shows that climate models and proxy data show similar seasonal trend patterns, which can, in 
the case of the model data, be attributed to orbital forcing. However, a lack of clearly seasonally resolved, 
high-quality proxy data makes it impossible to reliably detect orbital forcing in last millennium proxy recon-
structions at present, even though differential trends in proxy data suggest an orbital influence.

Our findings could resolve previous data discrepancies, including the difference in long-term trends found 
in ring width and density data (Esper et al., 2012; Fuentes et al., 2018; Klippel et al., 2020). It also provides 
an explanation for differing low-frequency variability between proxy reconstructions and model simula-
tions (e.g. the difference between MCA and LIA). We strongly advise against the mixing of proxy data with 
unknown or differing seasonal sensitivities when it comes to reconstructing long-term trends, or focus on 
multidecadal variability for such reconstructions (e.g. Neukom et al. (2019)).
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