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Abstract. Climate emulators trained on existing simulations
can be used to project project the climate effects that re-
sult from different possible future pathways of anthropogenic
forcing, without further relying on general circulation model
(GCM) simulations. We extend this idea to include differ-
ent amounts of solar geoengineering in addition to different
pathways of greenhouse gas concentrations, by training emu-
lators from a multi-model ensemble of simulations from the
Geoengineering Model Intercomparison Project (GeoMIP).
The emulator is trained on the abrupt 4×CO2 and a com-
pensating solar reduction simulation (G1), and evaluated by
comparing predictions against a simulated 1 % per year CO2
increase and a similarly smaller solar reduction (G2). We find
reasonable agreement in most models for predicting changes
in temperature and precipitation (including regional effects),
and annual-mean Northern Hemisphere sea ice extent, with
the difference between simulation and prediction typically
being smaller than natural variability. This verifies that the
linearity assumption used in constructing the emulator is suf-
ficient for these variables over the range of forcing consid-
ered. Annual-minimum Northern Hemisphere sea ice extent
is less well predicted, indicating a limit to the linearity as-
sumption.

1 Introduction

Climate emulators have been used extensively to provide
projections of climate change for different anthropogenic
forcing trajectories. These are trained based on a lim-
ited number of simulations with general circulation mod-
els (GCMs) and allow for prediction of climate response
for a much broader set of trajectories, trading the fidelity

of a GCM simulation for computational efficiency. A sim-
ilar approach could in principle be undertaken for projec-
tions of the climate effects from solar geoengineering. Var-
ious solar geoengineering approaches have been suggested
for intentionally influencing Earth’s radiation budget, such
as the injection of aerosols into the stratosphere (see, e.g.,
National Academy of Sciences, 2015). It is possible that
such approaches may be considered in the future for reduc-
ing some amount of climate damages. However, any climate
model simulation of geoengineering necessarily corresponds
to some specific scenario, such as offsetting all of the global-
mean-temperature change from other anthropogenic forcing
(as in GeoMIP; Kravitz et al., 2011, described in more de-
tail below). It is therefore useful to develop emulators that
can use existing simulations in order to predict climate con-
sequences both for different future trajectories of greenhouse
gas forcing and for different possible choices regarding the
level of geoengineering.

The simplest emulator approach is pattern scaling (Santer
et al., 1990; Mitchell, 2003; Tebaldi and Arblaster, 2014),
where a predictive dynamic model is used only for the time-
evolution of the global-mean temperature (either from energy
balance approaches or estimated directly from GCM simu-
lations), and the temperature at every spatial location is as-
sumed to vary with the same time evolution as the global
mean; i.e., the pattern of temperature change is not itself
a function of time. Other variables, such as precipitation
changes, are also assumed to depend only on the global-mean
temperature and on radiative forcing (Andrews et al., 2010);
the only “memory” in the emulator in this case remains em-
bedded in the dynamics of the global-mean temperature re-
sponse. Extending this, Cao et al. (2015) assumed precipi-
tation depends on global-mean-temperature and not only in-
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stantaneous CO2 concentrations but also solar reduction, al-
lowing for a different “fast” response to these different forc-
ings, but again maintaining global-mean temperature as the
sole dynamic predictor. Additional spatial patterns can also
be included to capture other forcing agents including aerosols
(Schlesinger et al., 2000; Frieler et al., 2012).

Of course, not all of the climate system responds to forc-
ing with the same time constants. Pattern scaling can be im-
proved upon by introducing additional dynamic variables,
such as land–sea temperature contrast (Joshi et al., 2013),
multiple empirical orthogonal functions (EOFs) of temper-
ature (Holden and Edwards, 2010; Herger et al., 2015) or
by including many more spatial degrees of freedom to bet-
ter predict regional effects (Castruccio et al., 2014). The use
of only one or a few dynamic variables (or predictors) is ul-
timately constrained by the difficulty in estimating the dy-
namic response of additional variables in the presence of cli-
mate variability due to low signal-to-noise ratio.

The primary assumption typically made in developing a
climate emulator for predicting climate response is that the
response is sufficiently linear and time-invariant (LTI). (We
are explicit about our usage of the terms linear and non-
linear in Sect. 2 below.) Success with emulators illustrates
that linearity can be a reasonable approximation, although
the accuracy of this assumption will depend on the variable
and the level of applied forcing (e.g., Tebaldi and Arblaster,
2014). The response of any LTI system to any time-varying
forcing can be described by a convolution between the im-
pulse response function that describes the system dynamics
and the exogenous forcing; see Eq. (1) in Sect. 2 below, and
also Åström and Murray (2008, Sect. 5.3) or Ragone et al.
(2015, Eq. 2). “Training” a linear emulator amounts to esti-
mating the impulse response from one or more simulations.
Nonlinear approaches to emulators are used in other aspects
of climate modeling, such as model tuning and parametric
uncertainty analysis (Neelin et al., 2010), but such investiga-
tions are beyond the scope of this manuscript.

We start from the same LTI assumption here as in the ref-
erences above, but extended to include solar geoengineering.
The spatial patterns of the responses to solar and greenhouse
gas forcing will not be the same, leading to regional differ-
ences in outcomes (Ricke et al., 2010; Kravitz et al., 2014,
2015), and the precipitation responses are not the same (Bala
et al., 2010; Andrews et al., 2010), nor necessarily the time
evolution of the responses (Cao et al., 2015). All of these fac-
tors are important to capture if the emulator is to be useful in
understanding climate effects of strategies that include solar
geoengineering. We therefore only make an LTI assumption,
and do not start with any additional a priori assumptions on
the form of the dynamics. We thus consider independent pre-
dictors for each variable. For estimating the spatial temper-
ature and precipitation response, we employ an EOF-based
approach (as in Herger et al., 2015) with a common set of
EOFs constructed from both CO2-forced and geoengineering
simulations. In addition to temperature and precipitation, we

also consider Northern Hemisphere sea-ice extent; the mini-
mum extent over the year provides an example where linear-
ity is not a good assumption.

We use simulations from the Geoengineering Model Inter-
comparison Project (GeoMIP; Kravitz et al., 2011), where
solar reduction is used as a proxy for any approach that
reduces incoming shortwave radiation. Linearity and time-
invariance are the only assumptions we make in developing
the emulator. The emulator can therefore be uniquely spec-
ified based on a single simulation for each model. The as-
sumption of linearity can then be evaluated by comparing
predictions with a second simulation for a different forcing
trajectory; deviations between these result from nonlinearity
and, conversely, agreement validates linearity being a rea-
sonable approximation. Section 2 describes the methodology
and simulations used, and the resulting emulator and valida-
tion are given in Sect. 3.

2 Approach

The expectation that an emulator calibrated to match the
GCM response to one climate forcing pathway can also do
so for a different pathway is typically based on the assump-
tion that the response to forcing can be reasonably approx-
imated as LTI. Here we consider a system forced by both
time-dependent forcing f (t) from changes in atmospheric
greenhouse gas concentrations and time-dependent forcing
g(t) from solar geoengineering. For any variable zi(t), we
define zfi (t) as the response to forcing f (t)with g(t)= 0 and
z
g
i (t) as the response to forcing g(t)with f (t)= 0, where the

response is defined in each case as the difference relative to
the initial state, and neglecting natural variability. The sys-
tem is linear if for any scalars α and β, the response to the
combined forcing αf (t)+βg(t), is the same linear combina-
tion of the individual responses, αzfi (t)+βz

g
i (t). Note that in

general, even if the system is linear, the ratio of any two vari-
ables will vary with time simply because different variables
respond at different rates; i.e., for any forcing scenario, in
general there is not some constant µ such that zi(t)= µzj (t)
for all time (a plot of zi(t) against zj (t) will not be a straight
line if these variables respond with different time constants).
The usage of the word nonlinear to express this latter idea is
distinct from the concept of the dynamic system itself being
linear or nonlinear. By a dynamic system, we simply mean
that z(t) depends on past values of the forcing f (t) or g(t)
in addition to the current values.

The climate system as a whole is highly nonlinear. How-
ever, the response to a perturbation about the current state
may be close to linear; if the perturbation is sufficiently small
then linearity will be a good approximation.
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2.1 Impulse response

For an LTI system forced by both time-dependent f (t) and
g(t), the response of any variable zi(t) can be expressed in
terms of a convolution between the input time series and the
system impulse response functions as

zi(t)=

t∫
0

h
f
i (τ )f (t−τ)dτ+

t∫
0

h
g
i (τ )g(t−τ)dτ+ni(t), (1)

where hfi (t) is the impulse response due to greenhouse gas
forcing and hgi (t) the impulse response due to solar reduc-
tions; these will not in general be identical, nor in general
the same for any choice of output variable zi . The variable
ni(t) is included to capture the effects of climate variability.
Because the emulator is designed to capture the forced re-
sponse, the actual character of ni(t) is unimportant in defin-
ing the emulator. The system is time-invariant if hfi (τ ) and
h
g
i (τ ) in Eq. (1) do not depend explicitly on the current time
t ; some possible exceptions are noted in Sect. 4. Note that
the response of a linear system can be completely character-
ized by the impulse response; knowing the impulse response
is thus sufficient to predict the response to any forcing tra-
jectory. The same formalism would also apply for predicting
the response to seasonally dependent forcing, but of course
additional training simulations would be required.

If the climate system were indeed LTI, Eq. (1) would hold
for any variable (temperature, precipitation, etc.), at global
or regional scale, whether at an annual-mean or a shorter
timescale, although the degree to which the forced response
can be estimated in the presence of natural variability will
vary with spatial and temporal scale, as will the influence of
nonlinearities. We consider variables evaluated once per year
(e.g., annual mean, or September sea ice extent), and Eq. (1)
can be cast in discrete time to predict the response in year k
as

zi(k)=

k∑
j=0

h
f
i (j)f (k− j)+

k∑
j=0

h
g
i (j)g(k− j)+ni(k). (2)

To estimate the impulse response for CO2 forcing, we use
the difference between the abrupt 4×CO2 simulation and
pre-industrial simulation for each of the models participat-
ing in GeoMIP. To estimate the impulse response for so-
lar reduction, we use the G1 simulation from GeoMIP, in
which the CO2 concentration was quadrupled and insolation
decreased to approximately maintain radiative balance and
hence global-mean temperature (see Fig. 1). The difference
between G1 and the 4×CO2 simulations thus gives the re-
sponse to an abrupt change in solar forcing, assuming linear-
ity. Note that each model separately chose the level of solar
reduction g4× required to balance the forcing from increased
atmospheric CO2; therefore, the percent solar reduction in
G1 varies from model to model based on the efficacy of so-
lar forcing in that model (see Table S1 in the Supplement).

Define

f (t)= log2

(
CO2(t)

CO2,ref

)
/2, (3)

g(t)=−

(
Solar(t)−Solarref

Solarref

)
/g4×, (4)

where CO2(t) is the time-varying atmospheric CO2 concen-
tration and Solar(t) is the solar irradiance. The 4×CO2 ex-
periment then corresponds to forcing f (t)= 1, t ≥ 0 and
f (t)= 0, t < 0 with g(t)= 0, while the GeoMIP G1 sim-
ulation uses the same f (t) but with g(t)= 1, t ≥ 0.

Substituting into Eq. (2) for any variable zi(k), the differ-
ence z4×

i (k) between its value in 4×CO2 and pre-industrial
is given by

z4×
i (k)=

k∑
j=0

h
f
i (j)+ ni(k) (5)

and the difference zG1
i (t) between its value in G1 relative to

4×CO2 is

zG1
i (k)=

k∑
j=0

h
g
i (j)+ ni(k) (6)

from which we can estimate

ĥ
f
i (k)= z

4×
i (k)− z4×

i (k− 1) and

ĥ
g
i (k)= z

G1
i (k)− z

G1
i (k− 1). (7)

The impulse responses hf,gi (k) could be estimated from
the time series of any forced simulation, but take a partic-
ularly simple form from these step response simulations.
(A linearly increasing forcing scenario such as a 1 % per
year increase in CO2 also leads to a simple form, with the
continuous-time impulse response proportional to the second
derivative of the 1 % CO2 response.)

These impulse response estimates are “noisy” due to nat-
ural variability. Various approaches could be used to reduce
the influence of natural variability, such as

1. using multiple ensemble members or multiple forcing
scenarios (as in Castruccio et al., 2014, for example);

2. only considering spatial averages by computing the
global mean as in pattern scaling, projecting onto EOFs
as in Herger et al. (2015) or averaging over specific spa-
tial regions as in Castruccio et al. (2014);

3. applying temporal filtering to smooth high-frequency
noise in ĥ or fitting h(t) to some estimated func-
tional form such as semi-infinite diffusion for global-
mean temperature (Caldeira and Myhrvold, 2013) or a
multiple-exponential (Castruccio et al., 2014);
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Figure 1. Schematic of GeoMIP G1 and G2 simulations, from Kravitz et al. (2011).

4. finding some less-noisy predictive variable, such as
global-mean temperature, to use as the predictor of
other, noisier variables (effectively what is done in pre-
dicting the regional precipitation or temperature re-
sponse in any pattern scaling analysis).

Choosing simulations with high forcing levels to train the
emulator (4×CO2 and GeoMIP G1) increases the “signal”
of the forced response relative to the “noise” of climate vari-
ability. This choice allows us to make useful predictions at
lower forcing levels without the need for introducing addi-
tional assumptions on the functional form of the dynamics,
such as that every field simply scales with global-mean tem-
perature. The drawback for this choice is that the high forcing
will exacerbate any nonlinear effects; this choice precludes,
for example, useful predictions of the Northern Hemisphere
annual-minimum sea ice extent (see Sect. 3 below), which
would require that a lower-forcing simulation be used to train
the emulator.

A frequency-domain perspective is useful to understand
how the “noise” due to climate variability affects the emula-
tor predictions. The Laplace transform of Eq. (1) transforms
the convolution into multiplication:

L(zi)= L(hfi )L(f )+L(h
g
i )L(g)+L(ni), (8)

=H
f
i (s)F (s)+H

g
i (s)G(s)+N(s), (9)

where the Laplace transform of the impulse response,
Hi(s)= L(hi), is the transfer function between that input
and that output; capital letters will denote the Laplace trans-
form of h(t), f (t) and g(t). (The discrete-time formalism in
Eq. (2) could similarly be analyzed with a Z-transform; we
use the continuous-time formulation here as readers are more
likely to be familiar with it.) The impulse response could thus
equivalently be estimated by first taking the Laplace trans-
form of the input and output, computing the ratio, and com-
puting the inverse transform. Consider for example the re-
sponse to increased CO2 (the estimation for solar reduction
is analogous), where the emulator is trained on the input fe(t)

and used to predict the response to a different forcing time-
series fp(t), with Laplace transforms Fe(s) and Fp(s). The

transfer function estimate used by the emulator is

Ĥ
f
i (s)=H

f
i (s)+

N(s)

Fe(s)
, (10)

and hence in the frequency domain the response predicted by
the emulator for input forcing Fp(s) is

Ẑi = Zi(s)+N(s)
Fp(s)

Fe(s)
. (11)

That is, climate variability in the simulation used to train the
emulator leads to an error in the prediction that depends on
the ratio of frequency content in the forcing signals between
training and prediction simulations. Because a “step” change
in the input, such as in the abrupt 4×CO2 simulation, has
more signal energy at low frequencies than high frequencies
(Laplace transform proportional to 1/s), it leads to a better
estimate of the output response at low frequencies than at
high frequencies; the high-frequency estimation errors due to
natural variability manifest as noise on the estimated impulse
response (see Fig. 2 for an example). However, the smoothly
varying radiative forcing input due to a 1 % per year increase
in CO2 has even less energy at high temporal frequencies
than the step input (Laplace transform proportional to 1/s2).
Thus, training an emulator on a step input simulation and
then using it to predict the results from a smoothly varying
forcing trajectory will result in relatively noise-free emula-
tor predictions, despite the apparent high-frequency noise in
the impulse response. Note that the GeoMIP G2 simulation
(described at the beginning of the next section) has an abrupt
change in the solar forcing at year 50 (see Fig. 1), and the
emulated responses to this step change in forcing are, as ex-
pected, noisier than those due to the smooth forcing changes
over the first 50 years of G2.

2.2 Spatial analysis

For predicting the spatial pattern of the forced response, we
estimate impulse responses not for every individual grid cell
in each GCM but only for the spatial response projected onto
the first few EOFs. For each model, EOFs are constructed
from the area-weighted spatial temperature and (separately)

Atmos. Chem. Phys., 16, 15789–15799, 2016 www.atmos-chem-phys.net/16/15789/2016/
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Figure 2. Estimated impulse response for CO2 and solar forcing, for global-mean temperature and precipitation, averaged over all nine mod-
els (Table S1); the inter-model standard deviation is shown by the shaded bands. While these impulse response functions are “noisy”,
predictions made using them are less so, particularly for forcing levels much smaller than those used in estimating these functions. Note for
precipitation the robust “fast” response to increased CO2 has the opposite sign as the “slow” response. Temperature and precipitation units
are given as the response for a quadrupling of CO2. (See Supplement, including Fig. S1, for individual model impulse response functions.)

the precipitation response. For each variable, and for each
model, a single set of EOFs is constructed using output from
both the 4×CO2 and G1 simulations, leading to a description
of the form

T (x,y, t)=

m∑
i=1

8i(x,y)ψi(t), (12)

where 8i are the spatial basis functions (EOFs) and ψi the
corresponding principal components (projection of T (x,y, t)
onto each 8i for any particular forcing scenario); the basis
set 8i are thus unchanged across the different forcing mech-
anisms and temporal trajectories. Truncating the set of EOFs
provides a maximally efficient basis for describing the spa-
tial pattern of the response, capturing any pattern strongly ex-
cited by either one or both forcing mechanisms. In general,
only the first few principal components are distinguishable
from climate variability and have any predictive capability
(Fig. S4) and we retain m= 4 throughout. The first pattern,
corresponding to the highest variance in the simulations, is
similar to the long-term pattern of global warming; choos-
ing m= 1 would thus be analogous to pattern scaling. In-
cluding additional EOFs captures both the differences in how
the climate responds to solar versus CO2 forcing, as well as
differences between the short- and long-term patterns of re-
sponse for either forcing (i.e., not everything responds at the
same rate). Temperature EOFs for one model are shown in
Fig. S1 in the Supplement, where the second EOF captures
the Equator-to-pole differential warming that is a robust sig-
nature of compensating a CO2-induced global-mean temper-
ature rise with a solar reduction, while EOFs 3 and 4 capture
Northern Hemisphere and global patterns of land tempera-
ture, which change more rapidly than ocean temperatures in
response to forcing.

The impulse responses can then be separately estimated
for each principal component as before from the 4×CO2 and

G1 simulations, and the time series of ψi for any other forc-
ing scenario estimated. Equation (12) is then used to con-
struct the estimate of the spatial response.

3 Results and validation

The impulse responses hfi (t) and hgi (t) are estimated for a
number of different variables from the abrupt 4×CO2 and G1
simulations as described above. The impulse-response-based
emulator for CO2 forcing without any solar reduction can be
validated by comparing the predictions with the simulations
for a 1 % per year increase in CO2 (1 % CO2). To validate
the emulation of solar reduction, we use the GeoMIP G2 sce-
nario, in which CO2 levels increase at 1 % per year, and for
the first 50 years, the solar reduction is gradually increased
to balance this forcing. This uses the same ratio of g(t) to
f (t) as in G1 for each model. After 50 years, the solar re-
duction is returned to zero so that only the radiative forcing
from the CO2 remains (see Kravitz et al., 2011, and Fig. 1
for a schematic of the forcing in the G1 and G2 simulations).
Several of the climate models that conducted experiments G1
and G2 exhibit significant drift in the absence of net radiative
forcing, due to the initialization state not being in equilib-
rium. These models are not considered further, leading to a
total of nine models considered here (Table S1).

The impulse response functions for predicting the global-
mean temperature and precipitation responses to either CO2
or solar forcing are shown in Fig. 2, averaged over all of these
climate models (see Supplement for tabulation of these and
other impulse responses for each model). As expected these
are noisy estimates due to natural variability. Note that while
the temperature response characteristics are similar (aside
from the sign) for increased CO2 and reduced insolation,
the precipitation response differs. The impulse response of
precipitation clearly highlights that while CO2 and solar re-
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Figure 3. Simulated and predicted global-mean temperature, both for a 1 % per year increase in CO2 (blue curves) and for GeoMIP exper-
iment G2 (red), for each of the climate models considered here. The predicted response using the emulator is given by black lines, solid for
the 1 % CO2 case and dashed for G2.

duction have a similar “slow” response (changes in precip-
itation that result from changes in temperature), they have
quite different fast responses (rapid atmospheric adjustments
in the climate system before temperature has time to adjust).
The fast response is related to different amounts of radia-
tive forcing absorbed by the atmosphere that affect stabil-
ity and convection (e.g., Andrews et al., 2010). For CO2-
forcing this leads to an initial precipitation response of the
opposite sign to the long-term slow response; although solar
reductions might largely compensate for the slow response
there will be residual differences due to the differential fast
response. Comparing impulse response functions between
models may also be useful in identifying differences in dy-
namics (Fig. S1).

Figure 3 validates the ability of the impulse response for-
mulation in Eq. (1) tuned from the 4×CO2 and G1 simu-
lations to correctly predict the global-mean temperature re-
sponse from the 1 % CO2 and G2 simulations. Linearity has
previously been argued as a reasonable assumption for tem-
perature and precipitation responses (Kravitz et al., 2014,
and references therein). Since that is the only assumption
made in constructing the emulator, the error in estimating

the forced response arises only from natural variability and
from nonlinearity. The difference between GCM-simulated
and emulator-predicted trajectories is similar to the standard
deviation of natural variability in many models; see Table 1.
Cases where the predicted and simulated responses agree to
within the limit imposed by natural variability indicates that
nonlinear effects are small relative to variability, and hence
this analysis also illustrates the utility of a linearity assump-
tion at these forcing levels.

Figure 4 shows the corresponding plots for global-mean
precipitation. The deviation between emulated and simulated
responses is higher for some models here than for tempera-
ture, though the estimation errors are close to the limit due
to natural variability for many models. Note that since G2
suppresses global-mean temperature changes, it largely sup-
presses the slow (temperature-dependent) precipitation re-
sponse (there will still be some effect from regional temper-
ature changes). This suggests that in models such as GISS-
E2-R, HadCM3 or MIROC-ESM, where the G2 emulation is
notably better than the emulation of the 1 % CO2 simulation,
larger nonlinearities in the precipitation response arise in the
slow rather than fast response to precipitation.

Atmos. Chem. Phys., 16, 15789–15799, 2016 www.atmos-chem-phys.net/16/15789/2016/
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Table 1. Root mean square (rms) deviation between simulation and emulator prediction. For the first three (scalar) variables, temporal rms
is computed over years 31–50, normalized by the standard deviation of interannual natural variability. For the spatial response, the area-
weighted rms is computed after normalizing by variability at each grid cell (i.e., the spatial rms of the deviation as measured in standard
deviations of natural variability).

Global-mean Global-mean Annual-mean Spatial rms Spatial rms
temperature precipitation NH sea ice temperature precipitation

Model 1 % CO2 G2 1 % CO2 G2 1 % CO2 G2 1 % CO2 G2 1 % CO2 G2

CanESM2 1.0 0.5 1.3 0.5 1.8 1.3 1.4 1.2 1.0 0.7
CESM-CAM5.1-FV 1.4 1.0 1.0 0.7 – – 1.8 1.2 1.5 1.2
GISS-E2-R 1.1 1.2 3.0 2.0 1.6 1.4 2.2 1.8 2.2 1.3
HadCM3 1.3 1.3 3.2 1.3 – – 2.2 1.9 1.3 1.2
HadGEM2-ES 1.4 1.7 2.7 1.3 1.0 1.7 2.4 1.7 1.0 0.8
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Figure 4. As in Fig. 3 but for global-mean precipitation. Simulated and emulated responses are shown for 1 % per year increase in CO2 and
GeoMIP experiment G2 for each of the climate models considered here.

Similar results are shown in the Supplement (Figs. S2, S3)
for the temperature or precipitation difference between land
and ocean; the only notable case where the error from nonlin-
earity exceeds natural variability is in the GISS-E2-R predic-
tion of land–sea precipitation differences in the 1 % CO2 sim-

ulation. While it is not our purpose to evaluate mechanisms
of nonlinearity in the climate models, this type of analysis
may be useful input into such research.

Northern Hemisphere sea ice extent is an example of a
variable that is both highly relevant for assessing possible fu-
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ture scenarios, yet one in which a nonlinear response to forc-
ing might be expected. The 4×CO2 forcing is large enough
that September sea ice is nearly lost in all models, and thus
an emulator trained off of this simulation will do a relatively
poor job at predicting the reduction in annual-minimum sea
ice extent from smaller forcing; see Fig. 5. However, despite
the obvious nonlinearity in the annual-minimum extent, the
annual-mean sea ice extent does behave sufficiently linearly
in most models, even at this large a forcing level, so that the
4×CO2 simulation can be used to train a useful emulator.
This is illustrated in Fig. 6.

Finally, Fig. 7 illustrates the ability to capture the spa-
tial response. One of the concerns raised regarding the use
of solar geoengineering is that the response from solar re-
duction does not perfectly compensate that from increased
CO2, resulting in some regional differences in temperature
and precipitation responses (Ricke et al., 2010; Kravitz et al.,
2014). It is therefore valuable to assess whether the emu-
lator can capture some of the regional variation in the re-
sponse between CO2 and solar forcing. As described ear-
lier, the regional response is predicted using EOF analysis
and estimating the forced response for the first few principal
components. Figure 7 plots the model-mean temperature and
precipitation responses averaged over years 41–50 of the G2
simulation for both the simulation and the emulator predic-
tion. The G2 simulation, like G1, results in overcooling of the
tropics and undercooling of the poles. The emulator slightly
underpredicts the residual Arctic warming in G2, likely due
to the nonlinearity associated with sea ice albedo feedback at
the 4×CO2 forcing used in training the emulator. The area-
weighted spatial root mean square (rms) of the difference
between emulated and simulated responses is also shown in
Table 1, normalized at each grid cell by the standard devia-
tion of interannual climate variability. Where the rms value is
close to unity implies that the errors introduced by assuming
linearity are not limiting the emulator predictions; the Arctic
nonlinearity contributes to the larger rms errors in tempera-
ture prediction for many models.

This raises an interesting observation. If it is purely the
forced response that is of interest, then a single GCM simula-
tion of a low-forcing scenario such as G2 leads to uncertainty
in the estimate due to natural variability. While the most ac-
curate estimate would be obtained by averaging over a suffi-
ciently large ensemble, this may not be achievable for com-
putational reasons. The emulator provides a computationally
efficient alternative. Because the emulated response is based
on simulations with roughly 3 times higher radiative forc-
ing, and because the process of its construction suppresses
high-frequency natural variability (Eq. 11), the estimate of
the forced response that it provides has less uncertainty due
to natural variability, at the cost of increased errors from non-
linearity. It is thus possible that, given only sufficient compu-
tation to conduct a single simulation, the emulated response
based on G1 could be a more accurate representation of the
forced response to G2 than that obtained from the actual G2
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Figure 5. As in Fig. 3 but for Northern Hemisphere annual-
minimum sea ice extent. Simulated and emulated responses are
shown for 1 % per year increase in CO2 and GeoMIP experiment
G2 for one model, GISS E2-R. The dotted line shows the response
for the abrupt 4×CO2 simulation. The relatively poorer emulator
prediction for the 1 % CO2 case in particular illustrates that the lin-
earity assumption does not hold for all relevant climate variables.

simulation. This is trivially true if indeed the response was
perfectly linear; in general there is a trade-off between er-
rors due to nonlinear effects and the uncertainty introduced
by variability.

4 Discussion

Climate emulators provide a powerful tool for assessing any
proposed future pathway of mitigation choices (including
carbon dioxide removal) and different levels of geoengi-
neering. For example, solar geoengineering could be used
only to limit peak warming as part of an “overshoot” sce-
nario in which atmospheric CO2 concentrations peak and
subsequently decline as net-negative carbon emissions re-
duce concentrations (Long and Shepherd, 2014; Tilmes et al.,
2016). A limited, temporary deployment has also been de-
scribed as a way to reduce the rate of warming (Keith and
MacMartin, 2015; MacMartin et al., 2014). These types of
limited-deployment scenarios are motivated in part by recog-
nizing that solar geoengineering sufficient to reduce global-
mean temperature to pre-industrial levels could lead to sig-
nificant regional disparities and other risks, while a deploy-
ment that only partially reduces global-mean temperature
might decrease some metrics of climate change everywhere
(Kravitz et al., 2014).

By training emulators on a standard set of simulations,
such as GeoMIP, which have been conducted by multiple
modeling centers, any proposed scenario such as these can be
readily evaluated with multiple models. This yields a compu-
tationally efficient method for providing insight into the ro-
bustness of conclusions. (Of course, any collection of mod-
els is an ensemble of opportunity, with interpretation chal-

Atmos. Chem. Phys., 16, 15789–15799, 2016 www.atmos-chem-phys.net/16/15789/2016/



D. G. MacMartin and B. Kravitz: Geoengineering emulator 15797

Time (years)
0 10 20 30 40 50 60 70

N
H

 s
ea

 ic
e 

ex
te

nt
 (

m
ill

io
n 

km
2
)

7

8

9

10

11

12
GISS-E2-R

Time (years)
0 10 20 30 40 50 60 70

N
H

 s
ea

 ic
e 

ex
te

nt
 (

m
ill

io
n 

km
2
)

2

4

6

8

10

12
CanESM2

Time (years)
0 10 20 30 40 50 60 70

N
H

 s
ea

 ic
e 

ex
te

nt
 (

m
ill

io
n 

km
2
)

0

2

4

6

8

10

12
HadGEM2-ES

Time (years)
0 10 20 30 40 50 60 70

N
H

 s
ea

 ic
e 

ex
te

nt
 (

m
ill

io
n 

km
2
)

0

2

4

6

8

10

12
MIROC-ESM

Figure 6. As in Fig. 3 but for Northern Hemisphere annual-mean sea ice extent. Simulated and emulated response are shown for 1 % per
year increase in CO2 and GeoMIP experiment G2 for several of the climate models considered here; the dotted line shows the response for
the abrupt 4×CO2 simulation.

Figure 7. Temperature (left) and precipitation (right) averaged over years 41–50 of the G2 simulation and averaged over all nine models. The
upper panels show the simulated results; the lower panels show the prediction based on a spatial emulator developed using four EOFs for
each model. As noted elsewhere, the robust response to increasing CO2 and reducing insolation to maintain zero global-mean temperature
difference is a net reduction (overcompensation) of global-mean precipitation (Bala et al., 2010), and an overcooling of the tropics and an
undercooling of the poles (Kravitz et al., 2013). The latter is an artifact of a latitudinally uniform reduction in sunlight, and could be better
managed by increasing the forcing at high latitudes relative to low (Kravitz et al., 2016).
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lenges as a statistical sample; see, e.g., Collins et al., 2013,
Sect. 12.2, for a thorough discussion.) The emulator used
here assumes that the climate system response can be suf-
ficiently well approximated over the range of forcing levels
of interest by the output of a linear system. For many vari-
ables, the analysis here indicates that this is a sufficiently
good assumption, with the difference between simulated and
emulated responses similar to the standard deviation of nat-
ural variability. There are many more variables that may be
of interest; similar analysis as here could be used to assess
whether a linear assumption is or is not sufficient for pro-
jecting the response of any variable beyond those consid-
ered here. The GeoMIP simulations are also of limited du-
ration, and nonlinearities may arise at longer timescales due
to changes in ocean dynamics, for example (Bouttes et al.,
2015).

Finally, note that the results herein were obtained using
simulations that reduce the solar constant as a proxy for
any solar geoengineering approach. While this is clearly a
useful first step, the climate effects from any specific tech-
nology, such as stratospheric aerosol injection (SAI) or ma-
rine cloud brightening (MCB) will differ (e.g., Ferraro et al.,
2015), both due to the different mechanism of radiative forc-
ing and the different spatial pattern of radiative forcing (the
latter being at least partially a design choice; Kravitz et al.,
2016). Further, while linearity appears to be a reasonable as-
sumption in these climate models for predicting the response
of many climate variables to an imposed solar reduction, it
may be a poorer approximation for SAI, for example. Non-
linearities will occur in aerosol size distribution (Heckendorn
et al., 2009; Niemeier and Timmreck, 2015), as well as due
to changes in the stratospheric circulation that result from
the aerosols (Aquila et al., 2014); time invariance also might
not hold if, for example, time-varying stratospheric chlorine
concentrations (which affect the aerosol impact on ozone) are
considered part of the “system” rather than a forcing. It is un-
clear how significantly these will affect the ability to develop
emulators for this technology.

5 Data availability

All GeoMIP data (GeoMIP, 2012) are archived along-
side CMIP5 data on the Earth System Grid Federation
(http://pcmdi.llnl.gov). CMIP5 is registered with the Reg-
istry of Research Data Repositories. The GeoMIP website
(http://climate.envsci.rutgers.edu/GeoMIP) provides a table
of available data for each experiment and how best to find
it. Please contact the authors for further questions about data
availability or to obtain a copy of the code that was used to
generate all of the analysis in this manuscript.

The Supplement related to this article is available online
at doi:10.5194/acp-16-15789-2016-supplement.

Author contributions. Douglas G. MacMartin and Ben Kravitz de-
signed the study, conducted the analysis and wrote the paper.

Acknowledgements. We thank all participants of the Geoengineer-
ing Model Intercomparison Project and their model development
teams, CLIVAR/WCRP Working Group on Coupled Modeling
for endorsing GeoMIP, and the scientists managing the Earth
System Grid data nodes, who assisted with making GeoMIP output
available. The Pacific Northwest National Laboratory is operated
for the U.S. Department of Energy by Battelle Memorial Institute
under contract DE-AC05-76RL01830. This work was partially
supported by Cornell University’s David R. Atkinson Center for a
Sustainable Future (ACSF).

Edited by: L. M. Russell
Reviewed by: three anonymous referees

References

Andrews, T., Forster, P. M., Boucher, O., Bellouin, N., and
Jones, A.: Precipitation, radiative forcing and global
temperature change, Geophys. Res. Lett., 37, L14701,
doi:10.1029/2010GL043991, 2010.

Aquila, V., Garfinkel, C. I., Newman, P. A., Oman, L. D.,
and Waugh, D. W.: Modifications of the quasi-biennial os-
cillation by a geoengineering perturbation of the strato-
spheric aerosol layer, Geophys. Res. Lett., 41, 1738–1744,
doi:10.1002/2013GL058818, 2014.

Åström, K. J. and Murray, R. M.: Analysis and Design of Feedback
Systems, Princeton University Press, Princeton, NJ, USA, 2008.

Bala, G., Caldeira, K., and Nemani, R.: Fast versus slow response
in climate change: implications for the global hydrological cycle,
Clim. Dynam., 35, 423–434, 2010.

Bouttes, N., Good, P., Gregory, J. M., and Lowe, J. A.: Nonlin-
earity of ocean heat uptake during warming and cooling in the
FAMOUS climate model, Geophys. Res. Lett., 42, 2409–2416,
2015.

Caldeira, K. and Myhrvold, N.: Projections of the pace of warm-
ing following an abrupt increase in atmospheric carbon dioxide
concentration, Environ. Res. Lett., 8, 034039, doi:10.1088/1748-
9326/8/3/034039, 2013.

Cao, L., Bala, G., Zheng, M., and Caldeira, K.: Fast and slow cli-
mate responses to CO2 and solar forcing: A linear multivariate
regression model characterizing transient climate change, J. Geo-
phys. Res.-Atmos., 120, 12037–12053, 2015.

Castruccio, S., McInerney, D. J., Stein, M. L., Crouch, F. L., Jacob,
R. L., and Moyer, E. J.: Statistical Emulation of Climate Model
Projections Based on Precomputed GCM Runs, J. Climate, 27,
1829–1844, 2014.

Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T.,
Friedlingstein, P., Gao, X., Gutowski, W., Johns, T., Krinner,
G., Shongwe, M., Tebaldi, C., Weaver, A., and Wehner, M.:
Long-term Climate Change: Projections, Commitments and Irre-
versibility, in: Climate Change 2013: The Physical Science Ba-
sis. Contribution of Working Group I to the Fifth Assessment Re-
port of the Intergovernmental Panel on Climate Change, edited

Atmos. Chem. Phys., 16, 15789–15799, 2016 www.atmos-chem-phys.net/16/15789/2016/

http://pcmdi.llnl.gov
http://climate.envsci.rutgers.edu/GeoMIP
http://dx.doi.org/10.5194/acp-16-15789-2016-supplement
http://dx.doi.org/10.1029/2010GL043991
http://dx.doi.org/10.1002/2013GL058818
http://dx.doi.org/10.1088/1748-9326/8/3/034039
http://dx.doi.org/10.1088/1748-9326/8/3/034039


D. G. MacMartin and B. Kravitz: Geoengineering emulator 15799

by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen,
S., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.,
Cambridge University Press, Cambridge, UK and New York, NY,
USA, 2013.

Ferraro, A. J., Charlton-Perez, A. J., and Highwood, E. J.: Strato-
spheric dynamics and midlatitude jets under geoengineering with
space mirrors and sulfate and titania aerosols, J. Geophys. Res.-
Atmos., 120, 414–429, 2015.

Frieler, K., Meinshausen, M., Mengel, M., Braun, N., and Hare, W.:
A scaling approach to probabilistic assessment of regional cli-
mate change, J. Climate, 25, 3117–3144, 2012.

Geoengineering Model Intercomparison Project (GeoMIP): Ge-
oMIP simulations, Registry of Research Data Repositories,
doi:10.17616/R3X64R, 2012.

Heckendorn, P., Weisenstein, D., Fueglistaler, S., Luo, B. P.,
Rozanov, E., Schraner, M., Thomason, L. W., and Peter, T.: The
impact of geoengineering aerosols on stratospheric temperature
and ozone, Environ. Res. Lett., 4, 045108, doi:10.1088/1748-
9326/4/4/045108, 2009.

Herger, N., Sanderson, B. M., and Knutti, R.: Improved pattern scal-
ing approaches for the use in climate impact studies, Geophys.
Res. Lett., 42, 3486–3494, doi:10.1002/2015GL063569, 2015.

Holden, P. B. and Edwards, N. R.: Dimensionally reduced
emulation of an AOGCM for application to integrated
assessment modelling, Geophys. Res. Lett., 37, L21707,
doi:10.1029/2010GL045137, 2010.

Joshi, M. M., Turner, A. G., and Hope, C.: The use of land-sea
warming contrast under climate change to improve impact met-
rics, Climatic Change, 117, 951–960, 2013.

Keith, D. W. and MacMartin, D. G.: A temporary, moderate and
responsive scenario for solar geoengineering, Nat. Clim. Change,
5, 201–206, 2015.

Kravitz, B., Robock, A., Boucher, O., Schmidt, H., Taylor, K. E.,
Stenchikov, G., and Schulz, M.: The Geoengineering Model In-
tercomparison Project (GeoMIP), Atmos. Sci. Lett., 12, 162–
167, 2011.

Kravitz, B., Caldeira, K., Boucher, O., Robock, A., Rasch, P. J., Al-
terskjær, K., Karam, D. B., Cole, J. N. S., Curry, C. L., Haywood,
J. M., Irvine, P. J., Ji, D., Jones, A., Lunt, D. J., Kristjánsson,
J. E., Moore, J., Niemeier, U., Schmidt, H., Schulz, M., Singh,
B., Tilmes, S., Watanabe, S., Yang, S., and Yoon, J.-H.: Climate
model response from the Geoengineering Model Intercompari-
son Project (GeoMIP), J. Geophys. Res., 118, 8320–8332, 2013.

Kravitz, B., MacMartin, D. G., Robock, A., Rasch, P. J., Ricke,
K. L., Cole, J. N. S., Curry, C. L., Irvine, P. J., Ji, D., Keith, D. W.,
Kristjansson, J. E., Moore, J. C., Muri, H., Singh, B., Tilmes,
S., Watanabe, S., Yang, S., and Yoon, J.-H.: A multi-model as-
sessment of regional climate disparities caused by solar geo-
engineering, Environ. Res. Lett., 9, 074013, doi:10.1088/1748-
9326/9/7/074013, 2014.

Kravitz, B., MacMartin, D. G., Rasch, P. J., and Jarvis, A. J.: A
new method of comparing forcing agents in climate models, J.
Climate, 28, 8203–8218, 2015.

Kravitz, B., MacMartin, D. G., Wang, H., and Rasch, P. J.: Geoengi-
neering as a design problem, Earth Syst. Dynam., 7, 469–497,
doi:10.5194/esd-7-469-2016, 2016.

Long, J. C. S. and Shepherd, J. G.: The strategic value of geo-
engineering research, Global Environ. Chang., 1, 757–770,
doi:10.1007/978-94-007-5784-4_24, 2014.

MacMartin, D. G., Caldeira, K., and Keith, D. W.: Solar geoengi-
neering to limit rates of change, Philos. T. R. Soc. A, 372,
20140134, doi:10.1098/rsta.2014.0134, 2014.

Mitchell, T. D.: Pattern Scaling: An examination of the accuracy of
the technique for describing future climates, Climatic Change,
60, 217–242, 2003.

National Academy of Sciences: Climate Intervention: Reflecting
Sunlight to Cool Earth, The National Academies Press, 500 Fifth
St. NW, Washington DC 20001, USA, 2015.

Neelin, J. D., Bracco, A., Luo, H., McWilliams, J. C., and Meyer-
son, J. E.: Considerations for parameter optimization and sensi-
tivity in climate models, P. Natl. Acad. Sci., 107, 21349–21354,
2010.

Niemeier, U. and Timmreck, C.: What is the limit of climate engi-
neering by stratospheric injection of SO2?, Atmos. Chem. Phys.,
15, 9129–9141, doi:10.5194/acp-15-9129-2015, 2015.

Ragone, F., Lucarini, V., and Lunkeit, F.: A new framework for cli-
mate sensitivity and prediction: a modelling perspective, Clim.
Dynam., 46, 1459–1471, doi:10.1007/s00382-015-2657-3, 2015.

Ricke, K. L., Granger Morgan, M., and Allen, M. R.: Regional cli-
mate response to solar-radiation management, Nat. Geosci., 3,
537–541, 2010.

Santer, B. D., Wigley, T. M. L., Schlesinger, M. E., and Mitchell,
J. F. B.: Developing climate scenarios from equilibrium GCM
results, Tech. rep., Max-Planck-Institut fur Meteorologie Report
Number 47, Hamburg Germany, 1990.

Schlesinger, M. E., Malyshev, S., Rozanov, E. V., Yang, F. L., An-
dronova, N. G., Vries, B. D., Grubler, A., Jiang, K. J., Masui, T.,
Morita, T., Penner, J., Pepper, W., Sankovski, A., and Zhang, Y.:
Geographical distribution of temperature change for scenarios of
greenhouse gas and sulfur dioxide emissions, Technol. Forecast
Soc., 65, 167–193, 2000.

Tebaldi, C. and Arblaster, J. M.: Pattern scaling: Its strengths and
limitations, and an update on the latest model simulations, Cli-
matic Change, 122, 459–471, 2014.

Tilmes, S., Sanderson, B. M., and O’Neill, B.: Climate impacts of
geoengineering in a delayed mitigation scenario, Geophys. Res.
Lett., 43, 8222–8229, 2016.

www.atmos-chem-phys.net/16/15789/2016/ Atmos. Chem. Phys., 16, 15789–15799, 2016

http://dx.doi.org/10.17616/R3X64R
http://dx.doi.org/10.1088/1748-9326/4/4/045108
http://dx.doi.org/10.1088/1748-9326/4/4/045108
http://dx.doi.org/10.1002/2015GL063569
http://dx.doi.org/10.1029/2010GL045137
http://dx.doi.org/10.1088/1748-9326/9/7/074013
http://dx.doi.org/10.1088/1748-9326/9/7/074013
http://dx.doi.org/10.5194/esd-7-469-2016
http://dx.doi.org/10.1007/978-94-007-5784-4_24
http://dx.doi.org/10.1098/rsta.2014.0134
http://dx.doi.org/10.5194/acp-15-9129-2015
http://dx.doi.org/10.1007/s00382-015-2657-3

	Abstract
	Introduction
	Approach
	Impulse response
	Spatial analysis

	Results and validation
	Discussion
	Data availability
	Author contributions
	Acknowledgements
	References

