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Abstract The Gangetic Plain (GP) of India is much sensitive
to rainfall due to its large spatial and temporal variability, and
therefore, Coupled Model Intercomparison Project phases 3
and 5 (CMIP3 and CMIP5)-simulated rainfall is analysed over
the GP. Model evaluation is carried out with observed rainfall
of India Meteorological Department (IMD) and Global
Precipitation and Climatology Project (GPCP). Community
Climate System Model version 3 (CCSM3), Hadley Centre
Global Environment Model (HadGEM) and Model for
Interdisciplinary Research on Climate (MIROC) (Hires) of
CMIP3 and CCSM4, CESM1 (WACCM) and CESM1
(CAM5) of CMIP5 sound well with observations. In
CMIP3, projected future changes in June-July-August-
September (JJAS) rainfall show either 5–15 % excess or
5 % deficit in CCSM3 (A2 scenario) and 10 % deficit in
HadGEM1. In B1, MIROC (Hires) shows 5–10 % deficit.
Under A1B scenario, deficit is possible in MIROC (Hires)
and HadGEM1. In CMIP5, CESM1 (CAM5) shows 5–15 %
deficit in Representative Concentration Pathway (RCP) 4.5.
CCSM4 and CESM1 (WACCM) show 10–20% excess while
5–15 % deficit is possible in CESM1 (CAM5) in RCP 8.5.
Key Points
• Validation of model performance with various statistical and
spatial aspect

• Comparison of rainfall in different model simulations of
CMIP3 and CMIP5

• Significant deficit of rainfall in CCSM3, CCSM4 and
CESM1(CAM5) models

1 Introduction

The summer monsoon over India is a unique system. The
large spatial and temporal variability of Indian summer mon-
soon rainfall (ISMR) over the Gangetic Plains (GP) of India
largely influences agriculture and water resources. The mon-
soon season in India prevails during June-July-August-
September (JJAS) (Rao 1976) and 80 % of the annual precip-
itation occurs during JJAS.

Important modes of variability of annual and seasonal rain-
fall over India have been studied (Hastenrath and Rosen 1983;
Shukla et al. 2002; Kulkarni et al. 1992; Kripalani et al. 1991).
A quantitative-subjective approach to rainfall fluctuation anal-
ysis in 49 physiographic subdivisions/provinces suggests
there is a decrease in annual rainfall in recent years/decades
in over ∼68 % area of the country (Sontakke et al. 2008).
Singh and Sontakke (2002) analysed rainfall for the period
of 1829–1999 over Indo-Gangetic Plain (IGP). The significant
increasing trend (170 mm/100 year.) of ISMR since 1900 is
observed over western IGP. Non-significant decreasing trends
of 5 mm/100 year since 1939 and 50 mm/100 year over cen-
tral IGP for the period of 1900–1984 are found. Non-
significant increasing trend of 480 mm/100 year for the period
of 1984–1999 over eastern IGP is shown. The decreasing
trend in monsoon and annual rainfall over the Ganga River
Basin starting in the second half of the 1960s is also suggested
by Kothyari and Singh (1996). Singh and Singh (1996)
analysed summer monsoon over the Himalayan region and
the Gangetic Plains through principal component analysis
(PCA) and reported coherent precipitation regimes associated
with large-scale spatial patterns. Pandey et al. (2007) exam-
ined time-lag correlation between monthly/seasonally
geopotential height over India and monsoon rainfall over the
Gangetic Plain to ascertain if any predictive relationship can
be obtained for the monsoon activity which may be useful for
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the long-range prediction of monsoon rainfall over four mete-
orological subdivisions, namely Plains of West Uttar Pradesh
(U.P.), East U.P., adjoining Bihar Plains and Gangetic West
Bengal. Jain and Kumar (2012) carried out an analysis on
trends in rainfall amount and number of rainy days in Indian
River basins using daily gridded rainfall data of India
Meteorological Department (IMD).

To predict ISMR, several techniques have been developed
by IMD (Gowariker et al. 1989; Rajeevan et al. 2006a). The
characteristics of Indian monsoon under global warming are
still a matter of intense scientific debate (Sabade et al. 2011;
Turner and Annamalai 2012). The possible impact of the glob-
al warming on Indian summermonsoon (ISM) using output of
different global and regional climate models have been
analysed; however, uncertainties exist in the regional climate
projections due to biasness in the global climate models (Lal
and Bhaskaran 1992; Meehl and Washington 1993; Lal et al.
1994, 1998; Rupa Kumar and Ashrit 2001; May 2002;
Kripalani et al. 2005; Rupa Kumar et al. 2006; Rajendran
and Kitoh 2008). The skill of predicting ISMR by global cli-
mate models is still very small (Kang and Shukla 2005). The
rainfall over north Bay of Bengal (BoB) and adjoining north-
east India is poorly simulated by many models (Lal and
Harasawa 2001; Rupa Kumar and Ashrit 2001; Rupa Kumar
et al. 2003). It is very likely that ISMR pattern and magnitude
may alter through local changes in surface processes in warm-
er climate (IPCC 2001, 2007). The weakness of summer mon-
soon rainfall is due to weakening of monsoonal flows and
tropical large-scale circulation in future climate (Knutson
and Manabe 1995). In Coupled Model Intercomparison
Project phases 3 (CMIP3) model simulations, Kripalani et al.
(2007a) suggested significant increase in mean monsoon pre-
cipitation of 8 % and possible extension of the monsoon peri-
od, in doubling of CO2 experiment of CMIP3. In the same
experiment, Kripalani et al. (2007b) applied t test and F ratio
and found statistical significant changes in future rainfall from
−0.6 % for CNRM-CM3 to 14 % for ECHO-G and UKMO-
HadCM3 for East Asian monsoon. Mandal et al. (2007)
highlighted verification of quantitative precipitation forecasts
of the Global Spectral Model (GSM). The rainy days are
projected to be less frequent and more intense over central
India. Menon et al. (2013) suggested increase in all-India
summer monsoon rainfall (AISMR) per degree change in tem-
perature of about 2.3 % K−1, which is similar to the projected
increase in global mean precipitation per degree change in
temperature in CMIP3 (Frieler et al. 2011). Parth-Sarthi
et al. (2012) suggested that under A2, B1 and A1B experi-
ments of CMIP3, a future-projected change in spatial distribu-
tion of ISMR shows deficit and excess of rainfall in Hadley
Centre Global Environment Model version 1 (HadGEM1),
European Centre Hamburg Model version 5 (ECHAM5),
and Model for Interdisciplinary Research on Climate
(MIROC) (Hires) over parts of western and eastern coast of

India which seems to be manifestation of anomalous
anticyclonic and westerly flow at 850 and 200 hPa over the
Arabian Sea. Shashikant (2014) examined rainfall simulation
in CMIP3 and CoupledModel Intercomparison Project phases
5 (CMIP5) in five (5) general circulation models (GCMs).
Multi-model average of CMIP5 simulations does not show
improvements in biasness over CMIP3; however, uncertainty
in CMIP5 projections is lower than that in CMIP3. Babar et al.
(2014) suggested MIROC5 model of CMIP5 can be consid-
ered for climate projections in highly complex climate system
of the Indian continent and near-term to century projections
would be more trustworthy. Above studies are mainly focused
on either observational or CMIP3/CMIP5 model simulations.
The comparison of rainfall in CMIP3 and CMIP5 simulations
would provide better understanding of future-projected rain-
fall over the GP and may be used for scientific study and
policy-making.

The current research deals with the comparison of CMIP3
and CMIP5 simulated future projected rainfall in different ex-
periments over GP. Introduction and literature surveys are brief-
ly placed in section 1. Study area, data, models and their exper-
iments are placed in section 2. Sections 3 and 4 briefly describe
model evaluation in simulating rainfall over GP and its future
projection. Conclusions are placed in section 5. The paper is
primarily focused on model evaluation in simulation rainfall
and its future-projected changes in CMIP3 and CMIP5 over GP.

2 Study area, data, models and experiment

2.1 Study area

Any spatial and temporal variation of rainfall in future time
periods over densely populated GP would affect people life,
agriculture and water resources. The study area comprises of
parts of Eastern Uttar Pradesh (UP), Bihar, Jharkhand and
West Bengal, and these regions are prone to floods and
droughts due to spatial and temporal changes in summer mon-
soon rainfall. GP is shown by rectangular a boundary (with
red colour) in figures of sections 3 and 4.

2.2 Data, models and experiments

The gridded observed rainfall of India Meteorological
Department (IMD) with resolution of 1°×1° for the period of
1961–1999 and of Global Precipitation Climatology Project
(GPCP) (Adler et al. 2003) at resolution of 2.5°×2.5° for the
period of 1979–1999 are considered. The simulated rainfall in
CMIP3 and CMIP5 (Alexander et al. 2012) and CMIP5 (Taylor
et al. 2012), in different models are considered, respectively.

Table 1 enlists CMIP3 (1961–1999) and CMIP5 (1961–
1999) models, affiliated country and their resolution. The sim-
ulated rainfall in the twentieth century (20C3M) experiments
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and high (A2), mild (A1B) and low (B1) emission scenarios
(Swart 2000; Alexander et al. 2012) are considered (Table 2)
for the period of 2006–2044. To capture ISMR in CMIP3

simulation, listed models are able to simulate monthly varia-
tion of rainfall (Parth-Sarthi et al. 2012). CMIP5 comprises set
of model simulation in historical experiment which is

Table 1 List of CMIP3 and CMIP5 models

CMIP3

Sr. no. Centre/country Models Horizontal surface resolution

1 UK UKMO-HadgGEM1 1.9×1.2

2 USA CCSM3.0 1.4×1.4

3 Germany ECHAM5 1.9×1.9

4 Japan MIROC 3.2 (Hires) 1.1×1.1

5 USA GFDL CM2.1 2.5×2.0

CMIP5

Sr. no. Centre/Country Models Resolution

1 Beijing Climate Center, China BCC-CSM1.1 128×64

2 BCC-CSM1.1(m) 320×160

3 College of Global Change and Earth System Science (GCESS), China BNU-ESM 128×64

4 CanCM4 128×64

5 CanESM2 128×64

6 National Center for Atmospheric Research (NCAR)/USA CCSM4 288×192

7 Community Earth System Model Contributors (NSF-DOE-NCAR), USA CESM1(BGC) 288×192

8 CESM1(CAM5) 288×192

9 CESM1(FASTCHEM) 288×192

10 CESM1(WACCM) 144×96

11 National Centre for Meteorological Research, France CNRM-CM5 256×128

12 CNRM-CM5-2 256×128

13 Commonwealth Scientific and Industrial Research
Organization (CSIRO-MK3L-1-2), Australia

CSIRO-Mk3L-1-2 192×96

14 LASG, Institute of Atmospheric Physics,
Chinese Academy of Sciences and CESS, IAP, China

FGOALS-g2 128×60

15 The First Institute of Oceanography (FIO), China FIO-ESM 128×64

16 NASA Goddard Institute for Space Studies (NASA GISS), USA GISS-E2-H 144×90

17 GISS-E2-H-CC 144×90

18 GISS-E2-R 144×90

19 GISS-E2-R-CC 144×90

20 National Institute of Meteorological Research/Korea
Meteorological Administration (NIMR/KMA), Korea

HadGEM2-AO 192×145

21 Met Office Hadley Centre (MOHC), UK HadGEM2-ES 192×145

22 Institute for Numerical Mathematics (INM), Russia INM-CM4 180×120

23 IPSL-CM5A-LR 96×96

24 IPSL-CM5A-MR 144×143

25 IPSL-CM5B-LR 96×96

26 University of Tokyo, National Institute for Environment Studies, Japan MIROC4h 640×320

27 Institute Pierre-Simon Laplace (IPSL), France MIROC5 256×128

28 Japan Agency for Marine-Earth Science and Technology,
Atmosphere and Ocean Research Institute,
National Institute for Environmental Studies, Japan

MIROC-ESM 128×64

29 MIROC-ESM-CHEM 128×64

30 Max Planck Institute for Meteorology (MPI-M), Germany MPI-ESM-LR 192×96

31 MPI-ESM-MR 192×96

32 MPI-ESM-P 192×96

33 Meteorological Research Institute (MRI), Japan MRI-CGCM3 320×160

34 MRI-ESM1 320×160

Cell entries in italics are considered models
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equivalent to 20C3M experiment of CMIP3, and integration is
carried out for 1850–2012 with external forcing and includes
greenhouse gases (GHGs), solar constant, volcanic activity,
ozone and aerosols, changing with time. Table 2 enlists all
the available representative concentration pathway (RCP)
4.5 and 8.5 experiments (2006–2044) in CMIP5 model simu-
lations (Fujino et al. 2006; Smith and Wigley 2006; Clarke
et al. 2007; Riahi et al. 2007; Van-Vuuren et al. 2007, 2011;
Hijioka et al. 2008; Wise et al. 2009; Masui et al. 2011; Riahi
et al. 2011; Thomson et al. 2011) and represents radiative
forcing of 4.5 and 8.5W/m2, and GHGs, solar constant, ozone
and aerosol are kept changing with time.

3 Model’s performance in simulating rainfall
over GP

To evaluate CMIP3 and CMIP5 model performance in simu-
lating rainfall, spatial distribution of simulated ISMR is

Table 2 List of considered models and their respective scenarios &
RCPs in CMIP3 and CMIP5

CMIP3

Models A2 scenario B1 scenario A1B scenario

CCSM3 √ √
ECHAM5 √ √
GFDL2-1 √ √
HADGEM1 √ √
MIROC (Hires) √ √

CMIP5

Models RCP 4.5 RCP 8.5

BCCCSM 1.1(m) √ √
CCSM4 √ √
CESM1-CAM5 √ √
CESM1 (BGC) √ √
CESM1 (WACCM) √
MPI-ESM-MR √ √
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Fig. 1 a–b Annual cycle of
rainfall (mm month−1) in
observation of IMD, GPCP and in
simulation of a 20C3M
experiment of CMIP3 and b
historical experiment of CMIP5
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compared with observation of IMD and GPCP. Only
Community Climate System Model version 3 (CCSM3),
MIROC (Hires) and HadGEM1 of CMIP3 seems to capture
spatial distribution of observed ISMR. In CMIP5, out of 34
models of historical experiment, only seven models sound
well with observation and out of them, only CCSM4 and
versions of CESM1 shows good agreement with observations.
The annual cycle of simulated rainfall of five models in
20C3M experiment of CMIP3 and seven models of historical
experiment of CMIP5 along with observed rainfall of IMD
(black dotted line) and GPCP (red dotted line) is shown in
Fig. 1a, b. It is difficult to extract information of annual pattern
of a particular model (Sperber and Annamalai 2014); howev-
er, it may be summarized that how well each model simulated
Bpattern^ (i.e. annual cycle of rainfall) is comparable with the
observed rainfall of IMD and GPCP.

Taylor’s diagram method (Taylor 2001) is useful in
assessing relative performance of models which simulated
rainfall over observed values. In this method, correlation co-
efficient and root-mean square error (RMSE) difference be-
tween two fields (simulated and observed), along with ratio of
standard deviations (SD) of two patterns, is indicated by a
single point on a two-dimensional (2D) plot. Statistics show
how accurately simulated values may be close to observation
and quantify the degree of similarity between simulated and
observed rainfall. The simulated pattern of each model,
marked with alphabets, and those sounds well with observa-
tion and will lie nearest the point marked with rectangle (in-
dicating observed rainfall) on positive X-axis. The simulated
rainfall will be close to observation, when there would be
relatively high correlation, low RMSE and minimum differ-
ence of standard deviation with respect to observation.

 Observed , A CCSM3, B ECHAM5, C GFDL2.1, D HadGEM1, E MIROC (Hires) 

 Observed, A BCC-CSM1.1m, B CCSM4, C CESM1(BGC),  D CESM1(CAM5), E CESM1(WACCM),  

F CESM1(FASTCHEM), G MPI-ESM-MR
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Fig. 2 a–d Taylor diagram for a IMD vs CMIP3, b GPCP vs CMIP3, c IMD vs CMIP5 and d GPCP vs CMIP5. e–f Model skill score in simulating
ISMR for the period of 1961–1999 with observation in 20C3M and historical experiments of CMIP3 and CMIP5, respectively
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Figure 2a–d shows Taylor diagram for simulated ISMR in
20C3M experiment of CMIP3 and historical experiment of
CMIP5 with observations (IMD and GPCP). In Fig. 2a, b,
CCSM3, HadGEM1 and Geophysical Fluid Dynamics
Laboratory (GFDL) 2.1 shows high correlation and lower
RMSE with IMD while CCSM3, HadGEM1 and GFDL2
simulated rainfall is comparable with GPCP. In Fig. 2c, d,
CCSM4 and CESM1 (WACCM) are able to capture JJAS
rainfall (mm month−1) for the period of 1961–1999.

Sometimes, skill score is used to rank model performance
in accurately simulating magnitude and pattern of rainfall. In
the past, several skill scores have been proposed (Murphy
1988; Murphy and Epstein 1989; Williamson 1995;
Watterson 1996; Watterson and Dix 1999; Potts et al. 1996).
Traditionally, skill scores have been defined to vary from zero
(least skilful) to one (more skilful). The simplest non-
dimensional skill score is defined by the following relation:

Skill Scores Sð Þ ¼ 4 1þ Rð Þ= σþ 1=σð Þ2 1þ R0ð Þ

where R is spatial correlation coefficient between simulation
and observation while σ is spatial standard deviation of simu-
lation divided by that of observation and R0 is the maximum
correlation attainable (i.e. 1). Model skill score for simulating
rainfall of 20C3M experiment (CMIP3) and historical exper-
iment (CMIP5), with observations (IMD and GPCP), is
shown in Fig. 2e, f. In CMIP3, CCSM3 shows maximum skill

score with IMD and GPCP; however, score is more with IMD
in comparison to that of GPCP. In CMIP5, CESM1(CAM5),
out of seven models, shows maximum skill score with IMD
and GPCP.

Figure 3a–d shows distribution of statistical measures (corre-
lation and RMSE) between model simulation of CMIP3,
CMIP5 and observations. The spacing between different parts
of box indicates degree of dispersion (spread), skewness and
outliers in model simulation for rainfall. In CMIP3, models have
high correlation and less RMSEwith IMD in comparison to that
of GPCP. Similarly, models of CMIP5 show high correlation
and less RMSE with observations. When CMIP3 and CMIP5
are compared with IMD, large distribution of correlation (large
RMSE) is seen in CMIP5. In case of GPCP, CMIP5 shows high
correlation (relatively low RMSE) in comparison to CMIP3.

It seems that due to different physical schemes used in
models, statistical measures are differing here, and therefore
model’s future projection may differ.

4 Projected future changes in rainfall over GP

To know the significance of future-projected percentage
changes in rainfall, Student t test at 99 and 95 % confidence
levels are applied in CMIP3 and CMIP5 simulations. In
CMIP3, future-projected changes in JJAS rainfall

a b

c d

Fig. 3 a–d Boxplot distribution
ofmodel skill scores in simulating
JJAS rainfall (mm month−1) for
CMIP3 models in a correlation
between IMD and simulation and
b RMS error, and for CMIP5
models in c correlation between
IMD and simulation and d RMS
error. The box shows the
interquartile range and outliers are
given by circles
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Fig. 4 a–u Projected changes (2006–2044) in rainfall (mm month−1) at
99 % (dark grey shaded) and 95 % (light grey shaded) significance levels
in CMIP3 simulation under A2 scenario for a CCSM3, b ECHAM5, c
GFDL2.1, d HadGEM1; under B1 scenario in e CCSM3, f ECHAM5, g
GFDL2.1, h MIROC (Hires); and under A1B scenario for i HadGEM1

and j MIROC (Hires). In CMIP5, model simulation under RCP 4.5 and
8.5 models for k BCC-CSM1.1m, l CCSM4, m CESM1(BGC), n
CESM1(CAM5), o MPI-ESM-MR and p BCC-CSM1.1m, q CCSM4,
r CESM1(BGC), s CESM1(CAM5), t CESM1(WACCM) and u MPI-
ESM-MR, respectively, is also considered
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(mmmonth−1) under A2, B1 and A1B scenarios (2006–2044)
with respect to baseline (1961–1999) in CCSM3, ECHAM5,
GFDL2.1, HadGEM1 and MIROC (Hires) are shown in
Fig. 4a–j. In A2 scenario (Fig. 4a–d), CCSM3 shows either
5–15 % excess or 5 % deficit of rainfall over GP. No signifi-
cant changes are noticed in ECHAM and GFDL, while 10 %
deficit of rainfall in HadGEM1 simulation is possible. In B1
scenario (Fig. 4e–h), MIROC (Hires) depicts 5 to 10 % deficit
rainfall at 99 % confidence level. In A1B scenario (Fig. 4i, j),
there is a possibility of deficit at 99 % confidence level in
MIROC (Hires) and 10 % deficit at 95 % confidence level
in HadGEM1 simulation.

The future-projected percentage change in JJAS rainfall
(mm month−1) in RCP experiments of 4.5 and 8.5 (2006–
2044) with respect to historical experiment (1961–1999) in
B C C - C SM 1 . 1 ( m ) , C C SM 4 , C E SM 1 ( BGC ) ,
CESM1(CAM5), CESM1(WACCM) and MPI-ESM-MR is
shown in Fig. 4k–u. RCPs 4.5 and 8.5 in CESM1(FASTC
HEM) and RCP 4.5 in CESM1(WACCM) is not available,
therefore not discussed here. Student t test is applied at 99
and 95 % confidence levels for six (6) models, namely BCC-
CSM1.1(m), CCSM4, CESM1(BGC), CESM1(CAM5),
CESM1(WACCM) and MPI-ESM-MR. In RCP 4.5
(Fig. 4k–o), at 95 and 99 % confidence, CESM1(CAM5)
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(Fig. 4n) shows 5–15 % deficit rainfall. Other models do not
show much significant changes. In RCP 8.5 (Fig. 4p–u), at 95
and 99 % confidence levels, CCSM4 and CESM1 (WACCM)
show 10–20 % excess rainfall, at part of GP, while 5–15 %
deficit over larger part of GP in CESM1(CAM5).

5 Conclusions

In CMIP3 and CMIP5, model performance in simulating rain-
fall (1961–1999) close to observations (IMD and GPCP) over
the Gangetic Plain (GP), India, is evaluated. Taylor diagram
methods and skill score shows that CCSM3 model of CMIP3
and CCSM4, CESM1 (WACCM) and CESM1(CAM5)
models of CMIP5 are able to simulate rainfall better than other
models. In comparison between CMIP3 and CMIP5, statisti-
cal measures in CMIP5 show large distribution of correlation
and RMSE with IMD observation and high correlation (rela-
tively low RMSE) with GPCP observations. It seems that
model validations of CMIP5 are relatively closer in GPCP
when compared to IMD; however, settings of 20C3M and
historical experiments are different.

In CMIP3, 5–10 % deficit of JJAS rainfall at 99 % confi-
dence level in A2 scenario of CCSM3 and HadGEM1 and in
B1 and A1B scenarios of MIROC (Hires) is possible. Ten-
percent deficit of JJAS rainfall at 95 % significant level in
HadGEM1 simulation may be possible. Only CCSM3 model
shows possibility of 5–15 % excess of JJAS rainfall in A2
scenario. In CMIP5, 5–15 % deficit of JJAS rainfall at 99 and
95 % significant levels in CESM1(CAM5) in RCP4.5 and
CCSM4 and CESM1(WACCM) in RCP8.5 is possible, while
5–15 % deficit of rainfall in CESM1(CAM5) may be possible
over parts of GP. It seems that significant deficit of JJAS rainfall
in CCSM3 model simulations of CMIP3 and CCSM4 and
CESM1(CAM5) of CMIP5 is possible over the GP.
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