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Supplementary text and figures 

 

The CSIRO-MK3L model’s climate sensitivity 

 

For the CSIRO Mk3L coupled model simulations that form the basis of the paper: 

 

(i) The transient climate response (TCR), as defined by the transient increase in 

global-mean surface air temperature upon a doubling of the atmospheric CO2 

concentration at a rate of 1% per year, is 1.4oC. This value is consistent with 

the 5-95% uncertainty range for the models reported in the 4th Assessment 

Report of the Intergovernmental Panel on Climate Change1 of 1.2-2.4oC, but 

less than the mean value of 1.76oC (ref 1). 

 

(ii) The equilibrium climate sensitivity (ECR), as defined by the equilibrium increase 

in global-mean surface air temperature in response to a doubling of the 

atmospheric CO2 concentration, is 4.1oC. Direct comparison with other 

climate models is misleading, as the ECR is generally estimated for other 

models, rather than being directly determined by integrating the models to 

equilibrium. Nonetheless, the ECR of 4.1oC for Mk3L is consistent with the 

5-95% uncertainty range for the models reported in the 4th Assessment 

Importance of background climate in determining
impact of land-cover change on regional climate

© 2011 Macmillan Publishers Limited.  All rights reserved. 

 



Report of the Intergovernmental Panel on Climate Change2 of 2.1-4.4oC, but 

greater than the mean value of 3.26oC (ref 1). The ECR of CSIRO Mk3L is 

also consistent with the AR4 report's conclusion that the "likely" value for 

the climate system lies within the range 2-4.5oC. 

 

 

The sensitivity of the CSIRO-MK3L model coupled to CABLE to LULCC 

 

An evaluation of how climate models coupled with sophisticated land surface models 

respond to LULCC has been conducted under the auspices of the international 

intercomparison project “Land-Use and Climate, IDentification of robust impacts” 

(LUCID). The role of LUCID was to address the robustness of possible (remote) 

impacts of LULCC but it has also led to an increasingly thorough examination of 

exactly how a LULCC perturbation is translated into temperature anomalies at the 

surface. The first-order results of LUCID have been reported3 and a detailed analysis 

of how CABLE responds within LUCID is forthcoming4.   

 

The version of CABLE used in LUCID was shown to respond to LULCC in ways 

consistent with most other LUCID models. There was one significant anomaly:  

CABLE had a very low sensitivity to LULCC in terms of the impact on the net 

radiation because the parameters used in the calculation of vegetation albedo did not 

vary as a function of vegetation type. Thus, any change in vegetation type did not 

cause a change in snow-free albedo. The current version of CABLE used in this paper 

differs from the version used in LUCID by defining vegetation-specific albedo 

parameters5 and calibrating the control simulation to closely match observed net 

radiation6. This approach in CABLE is consistent with how these processes are 

represented in most other LUCID models4. 

 

CABLE uses a three-layer snowpack model that computes the temperature, density, 

thickness and age of snow layers dynamically and adjusts snow albedo as these 

properties change. While by default snow settles on the soil below the vegetation 

canopy, effective leaf area index is reduced by the fraction of vegetation height 

occupied by the snowpack. This allows for realistic roughness and albedo changes if 

snow falls on short or sparse vegetation types, such as grasslands or open shrub land. 
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There is value in noting that climate models very likely fail to represent some key 

phenomenon associated with LULCC. These include biological volatile organic 

compounds that affect aerosol productions, aerosols linked with fire, possible impacts 

of the actual patterns of deforestation on turbulence and boundary layer processes and 

how these and other factors interact with cloud formation, cloud characteristics and 

rainfall processes. Weaknesses remain in how energy is partitioned between radiative 

and turbulent energy fluxes4, and how turbulent fluxes are split between latent and 

sensible heat.   

 

The resulting impacts of LULCC simulated by CSIRO Mk3L coupled with CABLE 

are provided in Supplementary Figures. Supplementary Figures S4 shows a seasonally 

dependent decrease in net radiation resulting from LULCC. This is as expected with 

LULCC mainly being represented by a change in vegetation from forests to crops and 

pasture which have a higher albedo and the patterns of reduction in net radiation are 

consistent with earlier studies7 in terms of pattern and magnitude. As a consequence 

of the decrease in net radiation a cooling in air temperature is typically simulated7,8,9 

where the impact of the decrease in net radiation dominates the consequences of a 

reduction in turbulent energy fluxes associated with the decrease in surface 

roughness4. The changes in the partitioning of net radiation between sensible and 

latent heat is more important in spring and summer when energy tends to be less 

limiting, hence temperature can (but do not always) increase due to LULCC3, 4, 7.  

 

These changes, while not consistently simulated by all models3 are less controversial 

than how rainfall will respond to LULCC. LUCID found a very inconsistent result3 in 

regions coincident with LULCC and no evidence of remote changes, a result others 

have previously found4,7. Others find evidence of global-scale teleconnections10,11, 

12,13. The results shown in Supplementary Figure S7 are within the range of existing 

simulations and the apparent decrease in precipitation over Asia is consistent with 

some earlier regional modelling studies14. However, how LULCC affects regional and 

global precipitation remains very uncertain. 

 

Few previous studies of LULCC have provided seasonal changes in snow in the form 

of maps, or changes in the geography of snow. While the amplified impact of LULCC 
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on temperatures over northern mid-latitudes shown in our results clearly supports and 

is consistent with studies associating changes in vegetation with snow masking15 a 

systematic comparison of the magnitude of this effect is lacking.  
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Supplementary figures 
 

 
Figure S1. The crop fractions implemented into CABLE, based on Hurtt et al. (2006).  
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Figure S2. The ratio of the absolute change in surface air temperature (oC) for each 

season due to LULCC at 1 x CO2 to the absolute change at 2 x CO2. Three 

regions are shown: Eurasia, Asia and eastern United States. A value of 0 is 

where the changes are identical while -0.5 is where the change at 2 x CO2 is 

double the impact at 1 x CO2. Only points that are statistically significant at a 

99% confidence level are shown. Note, negative values occur due to the 

subtraction of 1.0 from the ratio to centre “no change” on zero. 
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Figure S3. As Figure S2 but for precipitation (mm d-1). Only points that are 

statistically significant at a 99% confidence level are shown. 
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Figure S4. The change in net radiation (W m-2) for each season due to LULCC at 1 x 

CO2 (top four rows) and 2 x CO2 (bottom four rows). Three regions are 

shown: Eurasia (left), Asia (middle) and eastern United States (right). Only 

points that are statistically significant at a 99% confidence level are shown.  
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Figure S5. Snow depth (mm) in March-April-May for the three regions for the current 

land cover. Top - snow depth at 1 x CO2; middle - snow depth at 2 x CO2; 

bottom - difference (2 x CO2 minus 1 x CO2). Note different colour scales for 

the bottom panels. Only points that are statistically significant at a 99% 

confidence level are shown. 
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Figure S6. As Figure S4 but for surface air temperature (oC). Only points that are 

statistically significant at a 99% confidence level are shown. 
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Figure S7. As Figure S4 but for precipitation (mm d-1). Only points that are 

statistically significant at a 99% confidence level are shown. 
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Figure S8. As Figure S4 but for the latent heat flux (W m-2). Only points that are 

statistically significant at a 99% confidence level are shown. 
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