
ATMOSPHERIC SCIENCE LETTERS
Atmos. Sci. Let. 16: 461–464 (2015)
Published online 14 July 2015 in Wiley Online Library
(wileyonlinelibrary.com) DOI: 10.1002/asl.582

Validation of CMIP5 models for the contiguous United
States
Victor Privalsky1* and Vladislav Yushkov2

1Space Dynamics Laboratory (ret.), Logan, UT, USA
2Physics Department, Moscow State University, Russia

*Correspondence to:
V. Privalsky, 1272 Eastridge
Drive, Logan, UT 84321, USA.
E-mail: vprivalsky@gmail.com

Received: 7 January 2015
Revised: 30 March 2015
Accepted: 31 March 2015

Abstract
Major statistical characteristics – trend rates, mean values, standard deviations, probability
densities, autoregressive model orders, persistence criteria, and spectra – of annual surface
temperature over the contiguous United States from 1889 through 2005 are compared with
respective characteristics of 47 time series generated within the CMIP5 historical experiment.
The observed and most simulated time series are Gaussian. Most autoregressive orders,
persistence criteria, and spectra of simulated time series are close to what is found in nature.
Although the multi-model mean value is not biased, individual models can err by almost
3.5 ∘C. In addition, the models exaggerate linear trend rates and temperature variance is
overestimated.
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1. Introduction

Efforts to show that numerical models correctly
reproduce climatic variability including its stochastic
components present a traditional research area in clima-
tology (e.g. Jones et al., 2013). A full-scale validation
of climate models constitutes a statistically unmanage-
able task because it requires quantitative comparisons
between time-dependent sequences of observed and
simulated multidimensional random fields of climatic
data. However, the task becomes doable if the data are
spatially averaged so that multidimensional random
fields become scalar time series. Comparing time series
to each other is relatively easy. If a simulated time
series obtained in this manner has statistically the same
basic properties − such as trend rates, mean values
and variances, probability density functions, etc. − as
respective observed time series, one may regard the
climate model as reliable at the given scale of spatial
averaging. This is an obvious necessary condition for
recognizing models as being in agreement with obser-
vations. If, on the contrary, a model generates data
whose major statistical properties differ significantly
from those obtained from observations, the model is
inadequate.

This spatial averaging approach, first suggested in
Privalsky and Croley (1992), is used here to compare
basic statistical properties of the observed annual sur-
face temperature (AST) averaged over the 48 states of
the contiguous United States (CONUS) with respective
properties of AST generated with CMIP5 models
within the framework of CMIP5 historical experiment
at the same scale of spatial averaging. The choice of
CONUS is by no means random because the observa-
tion data over the CONUS territory since the end of the

19th century are probably more reliable than respective
data over any other region of similar or bigger size.

The statistical properties of AST to be analyzed here
include:

1. linear trend rates,
2. mean values and standard deviations,
3. type of probability density functions (PDFs),
4. orders of optimal autoregressive approxima-

tions and time series persistence (statistical
predictability),

5. spectral densities.

2. Data and methods

The initial monthly observation data were taken from
the HadCRUT4 file from the website of the University
of East Anglia (Morice et al., 2012) and averaged over
the CONUS and over 12 months to obtain a time series
of CONUS annual surface temperature. The observa-
tion data are available for the entire time interval of the
CMIP5 historical experiment from 1850 through 2005
but we selected a shorter interval from 1889 through
2005 during which the coverage with observations was,
according to the data set, never below 94%. The simula-
tion data for the same time interval were obtained from
the CMIP5 project data site (see Taylor et al., 2012) and
averaged in the same manner to obtain 47 time series
of simulated AST. With just a few exceptions, compar-
isons were conducted for run 1 of each model.

The first four statistical characteristics were cal-
culated in the usual manner while the spectra were
estimated through the autoregressive (AR) time series
modeling; the time domain models with properly
selected AR orders served as a basis for the maximum
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Table 1. List of models and statistical properties of observed and simulated temperature.

Model Trend, ∘C (100 years)−1 Mean, ∘C Standard deviation, ∘C p* d(1)* 𝝉0.9, yrs*

HadCRUT4 (observed) 0.56 11.16 0.46 1 0.97 0
ACCESS1-0 0.48 12.97 0.54 2 0.95 0
ACCESS1-3 0.29 14.59 0.46 1 0.93 1
BCC-CSM1-1 0.94 10.68 0.57 1 0.96 0
BCC-CSM1-1-M 0.93 11.65 0.58 0 1 0
BNU-ESM 1.24 9.86 0.64 0 0.95 1
CanESM2 0.53 10.26 0.62 1 0.92 1
CCSM4 0.23 11.46 0.57 0 1 0
CESM1-BGC 0.78 11.83 0.60 1 0.94 1
CESM1-CAM5 0.75 11.80 0.49 1 0.96 0
CESM1-FASTCHEM 1.04 12.11 0.57 1 0.94 1
CESM1-WACCM 0.97 11.61 0.55 0 1 0
CMCC-CESM 0.29 10.83 0.53 2 0.95 0
CMCC-CM 0.56 9.83 0.48 2 0.95 0
CMCC-CMS 0.42 10.39 0.54 2 0.95 0
CNRM-CM5 0.46 10.72 0.64 0 1 0
CNRM-CM5-2 0.40 10.52 0.53 0 1 0
CSIRO-MK3-6-0 0.35 12.20 0.54 1 0.95 1
CSIRO-MK3L-1-2 0.81 12.94 0.46 0 1 0
EC-EARTH 1.19 11.73 0.43 1 0.97 0
FGOALS-G2 0.90 7.80 0.52 1 0.91 1
FIO-ESM 0.84 11.63 0.43 2 0.97 0
GFDL-CM21 1.09 10.10 0.74 1 0.98 0
GFDL-CM3 0.38 10.64 0.52 1 0.91 1
GFDL-ESM2G 0.63 10.06 0.56 0 1 0
GFDL-ESM2M 0.67 10.62 0.63 2 0.84 2
GISS-E2-H 0.54 9.90 0.41 1 0.97 0
GISS-E2-H-CC 0.49 10.51 0.38 0 1 0
GISS-E2-R 0.27 9.66 0.45 1 0.97 0
GISS-E2-R-CC 0.27 9.40 0.44 1 0.92 1
HADCM3 0.68 10.00 0.71 1 0.94 1
HADGEM2-AO 0.34 12.49 0.64 3 0.84 3
HADGEM2-CC −0.03 11.87 0.61 0 1 1
HADGEM2-ES 0.67 11.83 0.63 3 0.78 4
INM-CM4 0.96 10.02 0.42 0 1 0
IPSL-CM5A-LR 1.49 9.92 0.47 1 0.96 0
IPSL-CM5A-MR 0.88 10.97 0.47 0 1 0
IPSL-CM5B-LR 0.89 9.67 0.52 1 0.89 1
MIROC5 0.58 13.00 0.54 1 0.92 1
MIROC-ESM 0.74 12.24 0.48 3 0.88 2
MIROC-ESM-CHEM 0.42 11.92 0.45 1 0.94 1
MPI-ESM-LR 1.29 10.90 0.55 1 0.96 0
MPI-ESM-MR 1.37 11.33 0.58 1 0.98 0
MPI-ESM-P 1.21 11.65 0.65 1 0.95 1
MRI-CGCM3 0.58 9.66 0.44 0 1 0
MRI-ESM1 0.78 9.87 0.39 0 1 0
NORESM1-M 0.65 10.84 0.50 1 0.96 0
NORESM1-ME 0.62 10.48 0.55 1 0.95 0
AVERAGE 0.70 11.00 0.53 1 0.95 1

*p, optimal autoregressive order; d(1), relative prediction error variance within the Kolmogorov–Wiener theory at lead time 𝜏 = 1 year ; 𝜏0.9, lead time
at which the relative prediction error variance attains 0.9 or more.

entropy spectral estimates and estimates of the time
series’ persistence.

3. Results

The list of models analyzed here is given in the first col-
umn of Table 1 with graphs of observed and simulated
time series shown in Figure 1.

3.1. Linear trend

As seen from Figure 1(a), both observed and simulated
temperature anomalies reveal a positive trend. The trend

rates have been estimated under the assumption that
every time series xn, n = 1, 2,… , N, presents a sum
of a zero mean white noise sequence 𝜀n with a linear
function of time: xn = 𝛼n + 𝜀n. As will be seen later, the
statistical models of the observed and simulated time
series of AST do not differ much from such a model.
Estimates of the coefficient 𝛼 are shown in Table 1
for the entire interval from 1889 through 2005. As
seen from the table, the trend rate in the observed data
amounts to 0.56 ∘C (100 years)−1 with the estimate’s
standard error 0.13 ∘C (100 years)−1. The average trend
rate estimate for the simulated data is 0.70 ∘C (100
years)−1. Only 22 trend rate estimates for the simulated
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Figure 1. Observed (black) and simulated (grey) AST over CONUS: (a) anomalies; (b) temperature; the blue line shows the average
simulated temperature.

data lie within the 95% confidence interval for the
estimate of the trend rate in the observed time series.
The range of trend rate estimates in simulated data is
1.5∘C (100 years)−1 [from 0 to 1.5∘C (100 years)−1].
In other words, the trend rate in the simulated data is
seriously overestimated. This result is unsatisfactory.
Note also that the positive bias in trend rate estimates
can hardly be caused by observation errors because,
according to Menne et al. (2010), there is ‘no evidence
that the CONUS average temperature trends are inflated
due to poor station siting’.

As the linear trend is supposed to have been caused
by external forcing, it has been removed from all time
series prior to further analysis.

3.2. Mean values and standard deviations

The observed mean value for 1889–2005 is 11.16 ∘C.
The multi-model average mean value estimate for the
simulated data is 11.00 ∘C (Figure 1(b)). However,
the mean value estimates for the simulated data lie
between 7.8 and 14.6 ∘C (a 6.8 ∘C range) and every-
one of them differs statistically significantly from the
observed value. These results are unsatisfactory.

As seen from Figure 1(a), the simulated time series
have a higher variance than observations. The observed
standard deviation (s.d.) of AST is 0.42 ∘C with a 95%
confidence interval between 0.37 and 0.48 ∘C. The aver-
age simulated s.d. is 0.53 ∘C – a statistically significant
difference with observations. The difference between
the standard deviation estimates of the observed and
simulated data is statistically significant for 30 models
at a 95% confidence level. On the whole, the standard
deviations estimates of the CMIP5 data are positively
biased. These results are unsatisfactory.

3.3. Probability density

The observed data have a probability density func-
tion that can be regarded as Gaussian according to

several criteria, including Kolmogorov–Smirnov’s
and chi-square. The simulated time series have the
same Gaussian type of PDF with just two excep-
tions (HADGEM2-AO and IPSL-CM5B-LR). This is
definitely a positive result.

3.4. AR model orders and persistence

The optimal model in this study was chosen for each
time series with four order-selection criteria: Akaike’s
AIC, Parzen’s CAT, Schwarz-Rissanen’s BIC, and
Hennan-Quinn’s Ψ (see Bhansali, 1986; Broersen,
2000). After the linear trend removal, the observed
time series xn, n = 1, … , N, where N = 117, is best
approximated with an AR model of order p = 1 (a
Gaussian Markov chain):

xn ≈ 0.21xn−1 + an (1)

where an is a zero mean innovation sequence (white
noise) with the variance 𝜎2

a = 0.17 (∘C)2. The RMS error
of the coefficient estimate in Equation (1) is 0.09.

The persistence of the stochastic model (1) is very
low: the relative error of a one-year lead time prediction
within the Kolmogorov–Wiener theory of extrapolation
is d (1) = 𝜎

2
a∕𝜎

2
x ≈ 0.97. In other words, the observed

time series is very close to a white noise. Most simulated
time series behave in the same manner.

The limit of statistical predictability is defined here as
the lead time of a Kolmogorov–Wiener linear extrap-
olation at which the error variance becomes equal to
0.90 or higher. Obviously, the observed time series has a
zero limit of statistical predictability (zero persistence).
Most simulated time series behave in the same manner
(see Table 1). This is again a positive result.

3.5. Spectral densities

The spectra of the observed and simulated time series
of annual surface temperature over the CONUS were
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Figure 2. Maximum entropy estimates of observed (red, with
90% confidence bounds) and simulated (grey) AST spectra. The
average simulated spectrum is shown with a thick black line.

obtained with the maximum entropy method (Burg,
1967; Jaynes, 1982). The algorithm includes fitting an
optimal AR model to the time series and then calculat-
ing the spectral density on the basis of the selected time
domain model. The approximate number of degrees of
freedom 𝜈 for the spectral estimates is determined as
𝜈 = N/p, where p > 0 is the order of the selected AR
model (Ulrich and Bishop, 1975).

The spectral estimates obtained for the 47 simulated
time series are shown in Figure 2 along with the spec-
trum of observations (the red curves) and the average
of the simulated spectra (the black curve). The higher
position of the average simulated spectrum happens
because of the positive bias in the variance estimates.
Only nine spectra of simulated data have AR orders
p= 2 or 3 and therefore can have one or two extrema
or inflection points. All other spectra are constant
(white noise, 13 cases) or monotonic (Markov chain, 25
cases). With few exceptions (BNU-ESM, CMCC-CMS,
GFDL-ESM2M, HADGEM2-AO, MIROC-ESM), all
spectra are close to the spectrum of observations. These
results should be regarded as positive.

4. Conclusions

An agreement between basic statistical moments of
the observed and simulated climates is a necessary
condition for recognizing the validity of numerical
models of climate. The CONUS cover a sizable part of
the Earth’s territory – over 5% – and present a region
with a practically complete coverage with instrumental

observations of surface temperature since the end of
the 19th century. These features make CONUS an
object particularly suitable for trustworthy validations
of numerical models of climate. Our analysis of time
series of the average over the CONUS annual surface
temperature generated with CMIP5 models showed that
the mean value averaged over the ensemble is unbiased,
most simulated time series have the same Gaussian
PDF as the observed time series. Most CMIP5 models
correctly reproduce the time and frequency domains
behavior of the observed time series (including prob-
ability distribution type, persistence parameters and
spectrum), which is close to the behavior of a white
noise sequence. These results are satisfactory.

Yet, the linear trend rates and standard deviations
of simulated annual surface temperature differ signif-
icantly from respective characteristics of the observed
time series while the mean value estimates vary by as
much as 6.8 ∘C. The trend rates are positively biased and
can exceed the observed rate by as much as 220%. All
mean value estimates for simulated data are statistically
different from the observed mean annual temperature;
they can differ from the observed mean value by more
than 3 ∘C. The standard deviation estimates are posi-
tively biased and can exceed the observed value by 60%.
These results are unsatisfactory.
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