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ABSTRACT

Several climate modeling groups have recently generated ensembles of last-millennium climate simulations

under different forcing scenarios. These experiments represent an ideal opportunity to establish the baseline

feasibility of using proxy-based reconstructions of late-Holocene climate as out-of-calibration tests of the fidelity

of the general circulationmodels used to project future climate. This paper develops a formal statistical model for

assessing the agreement between members of an ensemble of climate simulations and the ensemble of possible

climate histories produced from a hierarchical Bayesian climate reconstruction. As the internal variabilities of the

simulated and reconstructed climate are decoupled fromone another, the comparison is between the two latent, or

unobserved, forced responses. Comparisons of the spatial average of a 600-yr high northern latitude temperature

reconstruction to suites of last-millennium climate simulations from the GISS-E2 and CSIRO models, re-

spectively, suggest that the proxy-based reconstructions are able to discriminate only between the crudest features

of the simulationswithin each ensemble.Although one of the three volcanic forcing scenarios used in theGISS-E2

ensemble results in superior agreement with the reconstruction, no meaningful distinctions can be made between

simulations performed with different estimates of solar forcing or land cover changes. In the case of the CSIRO

model, sequentially adding orbital, greenhouse gas, solar, and volcanic forcings to the simulations generally im-

proves overall consensus with the reconstruction, though the distinctions are not individually significant.

1. Introduction

Reconstructions of past climate from natural proxies

provide a means for out-of-sample assessment of simula-

tions from the general circulation models that are used to

project future climate (Jansen et al. 2007;Masson-Delmotte

et al. 2013). Recently, a number of modeling groups have

produced ensembles of climate simulations covering the last

millennium using different combinations or estimates of

pre-instrumental greenhouse gas concentration, solar ir-

radiance, volcanic forcing, and other important climate

drivers. In what follows, we focus on last-millennium

simulation ensembles produced with GISS Model E2

(GISS-E2; Schmidt et al. 2011, 2012) and CSIROMark 3L

(CSIROMk3L; Phipps et al. 2013). These ensembles allow

for a formal investigation of the discriminating power of

proxy-based climate reconstructions in termsof their ability

to select between simulations conducted under different

forcing scenarios. We view this endeavor as a necessary

precursory step before addressing the more challenging

problem of using paleoclimate reconstructions to calibrate

parameters of a single climate model run under a given

forcing scenario that is then used to project future climate.

Ensemble-based paleoclimate reconstructions using hi-

erarchical Bayesianmethods are becomingmore prevalent

in the literature (e.g., Li et al. 2007; Tingley and Huybers
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2010a,b; Li et al. 2010; Tingley et al. 2012; Tingley and

Huybers 2013; Werner et al. 2013; Ahmed et al. 2013;

Barboza et al. 2014). These reconstructions feature the

robust uncertainty quantification required for making

meaningful comparisons between simulated and re-

constructed climate, and for assessing the viability of

discerning between climate simulations produced us-

ing different configurations or estimates of past forc-

ings. In what follows, we use the 600-yr temperature

reconstruction of Tingley and Huybers (2013); the

methodology we develop here, however, is readily

applicable to other reconstructions produced by hi-

erarchical Bayesian models.

Recent discussions and reviews of techniques for climate

reconstruction–simulation comparisons can be found in

Moberg (2013), Masson-Delmotte et al. (2013), and

Schmidt et al. (2014). Previous efforts for the late Ho-

locene have included qualitative comparisons of time se-

ries or maps (e.g., Mann et al. 2009; Kaufman et al. 2009),

fuzzy logic (e.g., Guiot et al. 1999), simple distance-based

metrics to select an optimal member from an ensemble of

simulations (e.g., Goosse et al. 2006), data assimilation

(e.g., Goosse et al. 2010), and statistical approaches based

on a detection and attribution framework (e.g., Hegerl

et al. 2007, 2011).

The ranking technique developed in Sundberg et al.

(2012) and applied in Hind et al. (2012), Hind andMoberg

(2013), and Moberg et al. (2015) points to the numerous

challenges involved in developing a statistical formalism

for selecting between climate model simulations based on

proxy observations. In our own development, we follow

Sundberg et al. (2012) in treating the problem as a re-

gression between latent quantities: any common structure

in the simulated and reconstructed climate is due to their

shared response to an external forcing, with the unforced

components of their respective variabilities independent of

one another.

In what follows, we develop and fit a Bayesian hierar-

chical model to describe the conditional dependencies

that link the simulated and reconstructed climates. In

contrast to Sundberg et al. (2012), where the statistical

model is used tomotivate two frequentist hypothesis tests,

we base conclusions on the posterior distributions of

model parameters. As a second contrast to Sundberg et al.

(2012), who base their analysis on point estimates of

temperature from a classical calibration analysis of proxy

series (Brown 1993; Christiansen 2014), we take as our

starting point the ensemble of posterior draws resulting

from a hierarchical Bayesian reconstruction. Since each

posterior draw is, conditional on the observations and

modeling assumptions, equally likely, our approach to

linking the simulated and reconstructed climates explicitly

takes into account the time-variable uncertainty in the

reconstruction. Because of the increased interest in

Bayesian reconstructions (Li et al. 2007; Tingley and

Huybers 2010a,b; Li et al. 2010; Tingley et al. 2012;

Tingley and Huybers 2013; Werner et al. 2013; Ahmed

et al. 2013; Barboza et al. 2014), we anticipate that the

tools developed here will be widely applicable for future

reconstruction–simulation comparisons.

We first introduce the proxy-based reconstruction and

climate simulations (section 2) and describe the Bayes-

ian hierarchical model (section 3); we then present re-

sults of comparisons between the reconstruction and the

GISS and CSIRO simulations, respectively (section 4).

In section 5, we discuss extensions and connections to

other areas, such as the model developed in Sundberg

et al. (2012), Hind et al. (2012), andMoberg et al. (2015);

data assimilation; detection and attribution (e.g., Allen

and Stott 2003); and computer model calibration. Con-

cluding remarks are provided in section 6. Details of the

Markov chain Monte Carlo (MCMC) algorithm used to

fit the Bayesian hierarchical model are provided in the

supplemental material.

2. Climate reconstruction and model runs

a. Climate reconstructions from hierarchical
Bayesian models

We use the paleoclimate reconstruction of April–

September temperature anomalies described in detail

in Tingley and Huybers (2013), based on tree-ring den-

sity, ice core, and varved lake sediment observations,

along with the University of East Anglia Climatic Re-

search Unit gridded instrumental temperature anomaly

data product (CRUTEMv3; http://www.cru.uea.ac.uk/cru/

data/temperature/). The reconstruction is performed us-

ing the hierarchical Bayesian algorithm for reconstruct-

ing climate anomalies in space and time (BARCAST;

Tingley and Huybers 2010a,b), which assumes tempera-

ture anomalies are first-order autoregressive in time, with

an exponentially decaying spatial covariance function.

Instrumental observations are modeled as noisy versions

of the true latent temperature anomalies, and each proxy

type is separately modeled as linear in the true temper-

ature anomalies with additive noise. Further details are

available in Tingley and Huybers (2010a). The end

product of the analysis is a large ensemble (here of size

4000) of posterior draws of the parameters that define the

statistical model as well as the reconstructed temperature

anomalies in space and time.

The reconstruction of Tingley and Huybers (2013),

extending back to 1400 CE, is defined between 458 and
858N on a 58 by 58 latitude–longitude grid and includes

only those grid boxes that include a minimal fraction of
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land. For the analysis considered here, we focus on the

spatial-average time series, formed by weighting, at each

year and for each posterior ensemble member, the grid

boxes by the area of land they contain.

As our interest is in assessing the ability of the proxies,

not the instrumental records, to discriminate between

forcing scenarios, we restrict our usage of instrumental

records to a minimum. Therefore, we primarily use results

from running BARCAST in a reduced, or predictive,

mode, as described in Tingley and Huybers (2013). In this

predictive mode, only the proxies are used to predict past

temperatures, and all scalar parameters are resampled

from an earlier calibration analysis that employs both in-

strumental and proxy datasets. As discussed in Tingley

et al. (2012) and Tingley and Huybers (2013), improved

inferences on past climate are achieved if information

from both the proxies and instruments are used for both

prediction and parameter estimation. Indeed, if the goal of

the analysis is to use all available information to select

between forcing scenarios, then using reconstruction re-

sulting from running BARCAST in predictive mode

would not be appropriate.

The ensemble of spatially averaged reconstructions

(Fig. 1) displays three noteworthy features: (i) there are

temporal trends in the reconstructed series, (ii) the se-

ries is skewed toward lower values, likely because of

influential volcanic events, and (iii) the uncertainty in-

creases into the past.

b. GISS-E2 simulations

The ensemble of GISS-E2 simulations is part of

phase 5 of CMIP (CMIP5)/PMIP phase 3 (PMIP3)

‘‘last millennium’’ experiment (Taylor et al. 2012;

Braconnot et al. 2011) conducted for the IPCC Fifth

Assessment Report. The simulations feature different

forcings over the 850–1850 CE interval (Table 1). As

the post-1850 forcings are common between the

simulations, following the CMIP5/PMIP3 ‘‘historical’’

experiment specifications, we confine comparisons with

the reconstructed climate to the 1400–1850 CE interval.

The simulations employ common transient greenhouse

gas and orbital forcings but different combinations of

estimated volcanic forcing [none, CEA (Crowley et al.

2008), or GRA (Gao et al. 2008)], estimated solar

forcing [SBF (Steinhilber et al. 2009) or VSK (Vieira

et al. 2011)], and estimated anthropogenic changes to

land use and land cover (LULC) [PEA (Pongratz et al.

2009) or KK10 (Kaplan et al. 2011)]; see Schmidt et al.

(2011, 2012) for further details. From a statistical per-

spective, the design is an incomplete factorial experiment

(see, e.g., Dean and Voss 1999) with no replication.

As discussed in the online documentation associated

with the GISS-E2 last millennium simulations,1 the vol-

canic forcing for the three simulations that employ the

GRA estimate (p122, p125, and p128; see Table 1) was

specified as a factor of 2 larger than intended. As our goal

is to assess the ability of the proxy-based reconstruction

to select between different forcing scenarios, this error

represents an opportunity: any feasible simulation–

reconstruction comparison should be able to identify

the simulations under doubled GRA volcanic forcing as

less reasonable than those featuring the CEA volcanic

forcing. A complicating issue, however, is that the tree-

ring densities used in the climate reconstruction may

overestimate volcanic cooling following large eruptions

(Tingley et al. 2014; Stine and Huybers 2014).

In addition to the forced simulations, the GISS-E2

ensemble includes a preindustrial control simulation,

with volcanic forcing fixed at the 850–1999 average (ac-

cording to CEA) and all other forcings fixed at 850 CE

FIG. 1. The black line is a time series plot of the pointwise-in-time posterior means of April–

September temperature anomalies from the proxy-based reconstruction. The light gray regions

delimit the posterior 0.025 and 0.975 quantiles. The dashed vertical line at 1850 indicates when

the GISS-E2 model runs end. The reconstruction uses only the proxy observations to predict

past temperatures.

1 See http://data.giss.nasa.gov/modelE/ar5/ for discussion and data

access.
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conditions (solar according to SBF and LULC according

to PEA). The control run features low frequency vari-

ability, whichwe capture (see section 3) using a stationary

time series model.

Figure 2 compares time series plots of temperatures from

the nine GISS-E2 simulations with the posterior mean of

the reconstructed temperatures, after removing the mean

value from each simulation. The level shift between the

GISS-E2 and reconstructed anomaly series occurs because

the reconstructed temperatures do not have amean of zero

over the period 1400–1850. Further differences between

simulated and reconstructed temperatures emerge when

examining trends, dependence, and tail structure. Simula-

tions that use CEA volcanic forcing look more similar to

the reconstructed climate, while the GRA estimate of

volcanic forcing leads to tails that are too long, consistent

with misspecification of the magnitude of volcanic forcing.

c. CSIRO simulations

The ensemble of CSIRO simulations covers the 500–

2000 interval and is based on a different experimental

design than theGISS-E2 ensemble. A single control run,

at fixed 1 CE forcing values, was used to initialize forced

simulations under four different forcing configurations,

adding in turn orbital (O), greenhouse (G), solar (S),

and volcanic (V) forcing; see Phipps et al. (2013) for

details. The solar forcing is from Steinhilber et al. (2009),

and the volcanic forcing is derived from Gao et al.

(2008); these correspond to the GRA volcanic and SBF

solar forcing used in the GISS-E2 simulations. Three

separate simulations are performed for each forcing

configuration, differing only in the year of the control

run used to initialize each, yielding a total of 13 simu-

lations, including the control. As with the GISS-E2 en-

semble, the additive experimental design is incomplete,

in the sense that simulations are not performed with

every possible combination of forcings. In contrast to

the GISS-E2 ensemble, the CSIRO ensemble does not

include different estimates of the same forcing. The in-

formation that can be learned by comparing the simu-

lations to the reconstruction is therefore different for the

CSIRO and GISS-E2 ensembles.

Time series plots comparing the ensemble averages of

the CSIRO simulated temperature at the four forcing

conditions and the control run, along with the posterior

mean of the reconstructed temperatures, are shown in

Fig. 3. Visually, the simulations that include orbital,

greenhouse, solar, and volcanic forcing appear to be in

better agreement with the reconstructed temperatures.

3. A hierarchical statistical modeling framework
linking simulated and reconstructed climate

The statistical model linking the reconstructed and

simulated spatially averaged temperature series is

specified via a collection of conditional distributions.We

first specify how the reconstruction relates to the un-

observed, or latent, true temperature series, which in

turn is modeled as the sum of forced and unforced

components. In analogous fashion, we decompose the

simulated-temperature time series into forced and un-

forced components. We specify the relationship be-

tween the reconstructed and simulated temperatures

as a linear regression between their respective forced

components. This hierarchical Bayesian modeling ap-

proach, combined with parameter inference viaMCMC,

permits for numerous sources of error to be accounted

for and propagated throughout the analysis.

For clarity in the development of the statistical model,

we explain how the reconstruction is related to an en-

semble of simulations produced using a single forcing

scenario. We then fit this statistical model separately for

the climate simulation(s) created using each forcing

scenario included in the GISS-E2 and CSIRO ensem-

bles. Although the unknown parameters of the statistical

model are therefore specific to the climate simulation

used to fit the statistical model, we suppress this de-

pendence to simplify notation. A summary of the model

components is provided in Table 2.

a. Modeling the reconstructed temperatures

The temperature reconstruction takes the form of a

random sample (ensemble) of spatially averaged recon-

structed temperature anomaly time series given the proxy

TABLE 1. Summary of forcing configurations for the GISS-E2 last

millennium simulations, as described in Schmidt et al. (2011, 2012).

SBF (Steinhilber et al. 2009) and VSK (Vieira et al. 2011) corre-

spond to two independent calibrations of cosmogenic isotope re-

cords to solar irradiance. CEA (Crowley et al. 2008) andGRA (Gao

et al. 2008) correspond to two independent reconstructions of vol-

canic aerosol optical depth, both derived from ice cores. As noted by

GISS (http://data.giss.nasa.gov/modelE/ar5/), the pre-1850 volcanic

forcing used in simulations p122, p125, and p128 was approximately

twice as large as intended from Gao et al. (2008). PEA (Pongratz

et al. 2009) and KK10 (Kaplan et al. 2011) correspond to two in-

dependent estimates of anthropogenic changes to LULC prior to

1850. All simulations use the same orbital and transient greenhouse

gas forcings.

Run ID Solar forcing Volcanic forcing LULC

p121 SBF CEA PEA

p122 SBF GRA PEA

p123 SBF None PEA

p124 VSK CEA PEA

p125 VSK GRA KK10

p126 VSK None PEA

p127 VSK CEA KK10

p128 VSK GRA PEA
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data and modeling assumptions. Denoting the kth such

series by fXk,t: t5 1, . . . , Tg, where k5 1, . . . , K, a rea-

sonable model for Xk,t is

X
k,t
jC

t
;N(C

t
,l

t
) , (1)

assuming conditional independence overk and t (i.e., given

Ct, the draws of Xk,t are independent over the different

series and time indices), The series fCt: t5 1, . . . , Tg
represents the underlying climate (here temperature

anomalies) as inferred from the data and is never directly

observed. The term lt . 0 captures the uncertainty in

the reconstruction of the underlying climate and in-

herits time dependence from the time-varying avail-

ability of data.

The latent climate time series Ct is then modeled as

FIG. 2. Time series plots in black of the GISS-E2 simulated temperature anomalies run at eight different numbered forcing combi-

nations (from 21 to 28) along with a control run (41). The temporal mean has been removed in each case. The posterior mean anomalies

from the proxy-based reconstruction are in gray.
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C
t
5FP

t 1UP
t , t5 1, . . . ,T , (2)

where fFP
t : t5 1, . . . , Tg and fUP

t : t5 1, . . . , Tg repre-

sent the forced and unforced, or internal variability,

components of the latent temperature series, respec-

tively, as inferred from the proxies (superscript P). To

capture temporal dependence in the unforced time series,

we assume that fUP
t g is a zero-mean first-order stationary

autoregressive [AR(1)] process with autocorrelation pa-

rameter 21,f, 1 and innovation variance s2 . 0.

For simplicity, we model the forced component as

normally distributed and independent across time:

FP
t j d, k;N(d, k2) .

Although this specification is a simplification, we note

that the resulting posterior distribution, which is not

constrained to be independent across time, still cap-

tures the time dependence in the forced component.

We provide additional discussion of these issues in

sections 4 and 5. To complete the specification of the

Bayesian model, it is necessary to specify priors for

the unknown parameters. Throughout, we assume that

the prior parameters are mutually independent, with

conjugate and weakly informative distributions (see,

e.g., Gelman et al. 2003). A full list of the priors and

hyperparameters is presented in Table 3.

b. Modeling the simulated temperatures

Wemodel the spatially averaged simulated-temperature

time series fYj,t: t5 1, . . . , Tg, where j5 1, . . . , J indices

the simulations at a given forcing configuration (J5 1 for

GISS-E2 and J5 3 for CSIRO), as

Y
j,t
5FM

t 1UM
j,t , t5 1, . . . ,T . (3)

As with the latent climate time series Ct, we decompose

the simulation into two parts, with the latent time series

fFM
t : t5 1, . . . , Tg and fUM

j,t : j5 1, . . . , J, t5 1, . . . , Tg
capturing the forced and unforced components of the

simulated or modeled (superscript M) climate, re-

spectively. We assume for each j that fUM
j,t : t5 1, . . . , Tg

FIG. 3. Time series plots in black of the averaged-over-the-ensembles CSIRO simulated temperature anomalies run at four forcing

combinations (O, OG, OGS, and OGSV) — orbital (O), greenhouse gas (G), solar (S), and volcanic (V)—including a control run. The

posterior mean anomalies from the proxy-based reconstruction are in gray.
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is a zero-mean AR(1) process with autocorrelation pa-

rameter f and innovation variance s2, with in-

dependence of the fUM
j,t g processes over the replicate j.

We further assume that the parameters f and s2 are

common to both fUM
j,t g and fUP

t g; that is, each of the

J1 1 realizations of internal variability are in-

dependent draws from a common statistical process. We

take an empirical Bayesian approach to the parameters

f ands2, estimating their values using the control-run time

series and then treating them as fixed. Assuming that the

variability of the unforced simulation, or control run, is an

adequate representation of the unforced variability of the

climate is a common assumption in detection and attribu-

tion studies (e.g., Hegerl et al. 2000).

c. Linking reconstructed and simulated temperatures

The reconstructed (P) and simulated (M) temperature

series are each decomposed into their respective forced

and unforced components, and we link the two forced

components via a linear-regression relationship:

FM
t 5b

0
1b

1
FP
t 1D

t
. (4)

Here fDt: t5 1, . . . , Tg captures the discrepancy be-

tween the two forced series modulo the regression

relationship, and we assume that Dt ;N(0, t2) with

independence over time. This regression framework

treats the unforced component of climate variability

as an additional error, present in the observations of

both independent and response variables. We specify

an inverse gamma prior for t2 and a bivariate normal

prior for b[ (b0,b1)
T; hyperparameters are provided

in Table 3. As the reconstruction is in anomaly units

and the simulations in kelvins, the intercept b0 cor-

rects for differences in location and level shifts and is

not otherwise interpretable.

The regression relationship [Eq. (4)] provides a link

between the latent forced components of the recon-

structed and simulated temperatures, and we use poste-

rior distributions of the parameters b1 and t
2 to assess the

agreement between the simulated and reconstructed cli-

mate. A value of unity for the slope b1 indicates that the

magnitude of the forced response is the same in both

reconstruction and simulation. We interpret values of b1

closer to one as indicative of better agreement between

the simulation and reconstruction. The variance of the

discrepancy term t2 is indicative of the magnitude of the

mismatch between reconstructed and simulated temper-

atures, with lower values indicative of better agreement.

We also introduce a variance fraction summary measure:

y
f
5

var(b
1
FP
t )

var(FM
t )

. (5)

We calculate the posterior distribution of yf using pos-

terior draws of b1, F
P
t , and FM

t . The variance fraction

gives the fraction of the variability in the forced com-

ponent of the simulation (denominator) that can be ex-

plained, according to the regression relationship [Eq. (4)],

by the forced response in the reconstruction (numera-

tor). Larger values of yf are indicative of more pref-

erable forcing configurations—the forced component

TABLE 2. Summary of the hierarchical Bayesian model. Throughout, t denotes the time index, j indices the simulations at a given

forcing configuration, and k indices the reconstructed temperatures. Conditional independence is assumed in the distributions over

indices.

Modeling the reconstructed temperatures: Xk,t jCt ;N(Ct , lt)

Xk,t The reconstructed temperatures. Observed.

Ct The underlying climate, as inferred from the proxy data. Latent.

lt The uncertainty in reconstructing the underlying climate. Latent.

Modeling the underlying climate inferred from proxy data: Ct 5FP
t 1UP

t

FP
t The forced component of the underlying climate. Latent.

UP
t The unforced component (internal variability) of the underlying climate. Assumed to follow an AR(1) process

over time. Latent.

Modeling the simulated temperatures: Yj,t 5FM
t 1UM

j,t

Yj,t The simulated temperature series. Observed.

FM
t The forced component of the simulated temperatures. Latent.

UM
j,t The unforced component (internal variability) of the simulated temperatures. Assumed to follow an AR(1) process

over time, with parameters matching UP
t . Latent.

Linking forced reconstructed and simulated temperatures: FM
t 5b0 1b1F

P
t 1Dt

b0, b1 Regression intercept and slope relating the two forced series. Latent.

Dt Captures the discrepancy between the two forced series modulo the regression. Assumed independent N(0, t2) over time.

Latent.
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of the simulation is in closer agreement with the forced

component of the reconstruction. We find below that

larger values of the slope b1, indicative of a stronger

association between the forced components of the re-

construction and simulation, are often accompanied by

larger values of the discrepancy variance t2, and the

variance fraction yf provides a useful means of bal-

ancing these competing results into a single assessment

of simulation–reconstruction agreement.

The nature of the regression relationship in Eq. (4)

suggests that obtaining accurate, stable inference con-

cerning the relationship between the simulated and re-

constructed temperatures is likely to be difficult. Both the

independent and dependent variables are latent quanti-

ties, in the sense that they are not observed directly. The

observed climate simulations are the sum of a forced re-

sponse FM and an unforced component. In the case of the

reconstructions, the forced response appears even deeper

in themodel: the observedXk,t depends onCt, which itself

is the sum of the forced component FP
t and an unforced

component. The addition of the unforced components,

which contribute a substantial fraction of the variability to

the observed series, results in a difficult inference problem,

despite our assumption that both the stochastic structure

and parameters of the unforced component are known.

d. Inference based on the posterior distribution

For both the CSIRO and GISS-E2 simulations, we fit

the statistical model separately for each forcing configu-

ration. For the CSIRO simulations, we fit the model in

two different ways, either separately for each of the three

simulations under each forcing configuration or by

pooling information across each three-member ensem-

ble. To simplify notation, let Yj 5 (Yj,t: t5 1, . . . ,T)T

denote simulation j under a specific forcing configura-

tion, Y5 (Y1, . . . ,YJ)
T, and FM 5 (FM

1 , . . . ,FM
T )T. For

the reconstruction, let Xk 5 (Xk,1, . . . ,Xk,T)
T, with

X5 (X1, . . . ,XK)
T. Finally, letC5 (C1, . . . ,CT)

T denote

the latent temperature vector implicit to the reconstruction,

and let FP 5 (FP
1 , . . . ,F

P
T )

T denote the forced component

of the latent temperature series. For each forcing con-

figuration r, the parameters that must be inferred are

then ur 5 (C, FM, FP, b, t2, d, k2, fltg). Although each

element of ur implicitly depends on the particular forc-

ing configuration r used to create the simulation, we

suppress this dependence to simplify the notation. The

term p(ur jY, X), the posterior distribution of the pa-

rameter vector ur given the observations (the simula-

tionsY under forcing configuration r and reconstruction

X), is proportional to
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As the posterior density is not available in closed

form, we sample from it using an MCMC algorithm

(e.g., Gelman et al. 2003); further details of the al-

gorithm are provided in the supplemental material.

We ran multiple Markov chains with different initial

values. Our MCMC estimates were very similar

across these multiple chains, which gives us confi-

dence that we have run the chain for long enough to

eliminate potential biases due to initial values.We also

checked autocorrelation plots to diagnose problems due

to slowmixing in our Markov chain. We are satisfied that

the autocorrelations, particularly after thinning, are suf-

ficiently small, and therefore the variability (MCMC

standard errors) of our estimates is also sufficiently small.

Results below are based in each instance on 2000 samples

from the posterior (for each of two chains, 10 000 further

draws thinned by a factor of 10 after a burn-in of 1000

samples).

TABLE 3. Prior distributions and associated hyperparameters of the Bayesian model.

Parameter Prior Hyperparameters Parameter Prior Hyperparameters

b N2(mb, Vb) mb 5 (0, 0)T, Vb 5 100I2 t2 IGa (st , rt) st 5 0:01, rt 5 0:01

d N(md, yd) md 5 0, yd 5 100 k2 IGa (sk, rk) sk 5 0:01, rk 5 0:01

lt for each t IGa (sl, rl) sl 5 0:01, rl 5 0:01

15 OCTOBER 2015 T I NGLEY ET AL . 8271



4. Results

a. Results for GISS-E2 simulations

As the GISS-E2 last millennium experiments meld

into the commonly forced historical runs after 1850, we

limit comparisons with the reconstructed climate to the

1400–1850 interval. An AR(1) process appears to be a

reasonable model for the GISS-E2 control run (Box–

Ljung test for residuals; 30 lags; p value5 0.47), and the

estimated autocorrelation parameter and innovation

variance are f̂5 0:15 [standard error (SE) 5 0.05] and

ŝ2 5 0:05. Using these empirical estimates, we fit the

Bayesian model (section 3) to each of the eight forced

GISS-E2 simulations (Fig. 4; Table 4).

The year-specific error variance in the proxy recon-

struction fltg is determined largely by the proxy-based

reconstructions and is therefore similar for all forcing

configurations. In general, fltg shows a decrease toward
the present, as more proxies are available in recent cen-

turies (Fig. 4c). The large drops in variance correspond to

stepwise changes in data availability [see, e.g., Fig. S1 of

Tingley and Huybers (2013)].

For each of the two forcing scenarios that exclude vol-

canic forcing, the posterior distribution of the slope pa-

rameter b1 includes zero, indicating little or no agreement

between these forced simulations and the reconstructions

(Fig. 4a). The corresponding posterior distributions of the

discrepancy variances t2 are sharply peaked at near-zero

values (Fig. 4b), indicating that the simulations without

volcanic forcing have statistical distributions similar to that

of the control run. This observation follows from com-

bining Eqs. (3) and (4) and expressing each simulated

temperature series Yj,t as

Y
j,t
5b

0
1b

1
FP
t 1D

t
1UM

j,t t5 1, . . . ,T . (6)

When bothb1 and t
2, the variance ofDt, are close to zero,

the simulated temperatures exhibit statistical properties

matching those of the control-run process. Posterior dis-

tributions of the variance fraction yf are likewise close to

FIG. 4. Posterior summaries for the hierarchical Bayesian models fit to the GISS-E2 simulated temperatures at

each of the eight forcing scenarios (black circles); the vertical lines indicate estimated 95% credible intervals for

each parameter. (a) Posterior means of the slope parameter b1; the horizontal dashed lines indicate b1 values of

0 and 1. (b) As in (a), but for the variance of the discrepancy term t2. (c) The posterior mean of lt vs t for the first

forcing scenario is shown by the black lines; the gray lines denote pointwise credible intervals. (d) Box-and-whisker

plots summarizing posterior distributions of the variance fractions. The box extends from the first to the third

quartile, with the median marked by a thick horizontal line. Whiskers extend to the most extreme values within 1.5

interquartile ranges of the box edges, and all more extreme values are plotted as circles.

8272 JOURNAL OF CL IMATE VOLUME 28



zero, further confirming little agreement between these

simulations and the reconstructed temperatures.

For each of the sixGISS-E2 simulations that includes an

estimate of volcanic forcing, the posterior distribution of

the slope parameter covers unity, indicating broad agree-

ment between the simulations and the reconstructions

(Fig. 4a). The large posterior variance ofb1 for simulations

that include the GRA forcing indicates an uncertain link

between FM
t and FP

t for these forcing scenarios.

The three GISS-E2 simulations with the GRA volcanic

forcing feature large discrepancy variances and low vari-

ance fractions, indicating disagreement between the

simulations and the reconstruction, despite the reason-

able slope parameters. The three GISS-E2 simulations

that use the CEAvolcanic forcing are in better agreement

with the reconstructed climate, as evidenced by lower

discrepancy variances and higher variance fractions. As

the GRA forcing used in the GISS-E2 simulations was

double the intended value (section 2b), the better agree-

ment between the reconstruction and the simulations that

include the CEA (as opposed toGRA) volcanic forcing is

to be expected. Results therefore confirm the ability of

our hierarchical Bayesian modeling approach to correctly

identify a set of forcing scenarios as unreasonable.

The impact of different choices of solar forcing and

LULC are harder to detect (Fig. 4). The simulation with

VSK solar, CEA volcanic, andKK10 LULC features the

smallest discrepancy variance and the highest posterior

mean variance fraction, suggesting that it features the

closest agreement with the reconstruction. Of the three

simulations that feature CEA volcanic forcing, that with

VSK solar and PEALULC features the lowest posterior

mean variance fraction, suggesting that it is in poorest

agreement with the reconstruction.

We briefly discuss (but do not plot) the results of two

additional versions of the analysis. In comparing results

under these different analysis choices, it is important to

note that there are at least four potential sources of un-

certainty: the climate models, the estimated forcing se-

ries, the proxy records, and the statistical framework that

links these elements. As these sources of uncertainty

cannot be readily disentangled from one another, it is

possible that comparative results may not lend them-

selves to clear interpretations.

1) Excluding volcanic years. In this set of experiments,

years featuring volcanic eruptions with volcanic ex-

plosivity indices greater than six (taken from Simkin

and Siebert 1994) were excluded from the analysis,

along with the two subsequent years. These volcanic

years have a disproportionately large impact on the

distribution of temperatures, for both the simulations

and reconstructions, so it is worthwhile to explore the

agreement between simulations and reconstruction

after they are excluded. Furthermore, there is evi-

dence that the tree-ring records included in the re-

construction do not correctly capture volcanic cooling

(e.g., Stine and Huybers 2014; Tingley et al. 2014). In

general, the resulting slope parameters are reduced as

compared with the analysis that includes all years,

with a larger magnitude of decrease for the GRA

forcing. For those simulations that include volcanic

forcing, excluding the major volcanic events reduces

the posterior means of the variance fractions by

between 0.08 and 0.21 units. The pattern of change

is similar for the discrepancy variances. Results sug-

gest that the response to major volcanic events is a

significant source of variation in the forced compo-

nent of the GISS-E2 simulations and that a similar

behavior is evident in the reconstructed climate. As

before, the variance fractions for the simulations that

employ the CEA estimate of volcanism, as opposed to

the GRA estimate, are higher, indicating better

agreement with the reconstruction.

2) Decadal averages. We reran the analysis using de-

cadal averages of the simulations, control run, and

reconstructions, estimating the parameters f and s2

in the AR(1) process using the decadal averaged

control run. This analysis yields marginally smaller

mean values of the slope parameter b1, discrepancy

TABLE 4. Posterior means and 95% credible intervals (in parentheses) for a selection of parameters in the hierarchical Bayesianmodel,

for fits to the eight GISS-E2 simulations (for forcing configuration, see Table 1). Rows in boldface indicate posterior credible intervals for

the slope parameter b1 that do not include zero.

Model b1 t2 yf

21 SBF/CEA/PEA 1.160 (0.773, 1.644) 0.032 (0.011, 0.052) 0.545 (0.291, 0.842)

22 SBF/GRA/PEA 1.331 (0.784, 2.033) 0.143 (0.102, 0.185) 0.257 (0.095, 0.466)

23 SBF/None/PEA 20.134 (20.371, 0.107) 0.006 (0.002, 0.012) 0.126 (0.000, 0.477)

24 VSK/CEA/PEA 0.989 (0.639, 1.429) 0.037 (0.020, 0.054) 0.431 (0.206, 0.674)

25 VSK/GRA/KK10 1.055 (0.573, 1.680) 0.094 (0.065, 0.124) 0.248 (0.080, 0.477)

26 VSK/None/PEA 20.023 (20.289, 0.218) 0.009 (0.003, 0.016) 0.048 (0.000, 0.240)

27 VSK/CEA/KK10 1.019 (0.692, 1.421) 0.017 (0.005, 0.032) 0.642 (0.342, 0.901)
28 VSK/GRA/PEA 1.188 (0.716, 1.821) 0.100 (0.068, 0.131) 0.281 (0.116, 0.508)
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variance t2, and time-varying variance lt, though the

posterior distributions feature substantial overlaps

with the annual-scale results. The latter two changes

are obvious effects of smoothing out the yearly time

series. Variance fractions are generally in the same

range as those for the annual results, but the posterior

distributions for the different simulations that feature

the CEA volcanic forcing feature greater overlap.

b. Results for CSIRO

The ensemble of CSIRO simulations has two ad-

vantages relative to the GISS-E2 simulations. First, the

simulations extend through the twentieth century un-

der different forcings. Second, there are three simulations

for each forcing scenario.We therefore fit themodel in two

different ways, either separately for each of the three

simulations under each forcing configuration or by pooling

information across these three-member ensembles. Pool-

ing information results in a tighter inference of model

parameters, while separate fits allow for an exploration of

the variability of the results between simulations under the

same forcing configuration.

Results are based once more on assuming an AR(1)

model for the control runs. The estimated autocorrelation

parameter is f̂5 0:21 (SE 5 0.024), and the estimated

innovation variance is ŝ2 5 0:04. We note, however, that

the CSIRO control run exhibits a longer range of de-

pendence in the sense that higher order AR coefficients

may be significant. The dependence structure in the

CSIROsimulations ismore involved than that found in the

GISS-E2 simulations, and as a stationary AR(1) model

cannot capture the observed dependence, more caution is

required when interpreting results.

We first consider results based on the climate re-

construction that employs only the proxy observations

over the 1400–1990 interval (Fig. 5; Table 5). For all

forcing configurations, the time series of year-specific

variances lt are similar to one another (Fig. 5c) and show

the same progression as for the GISS-E2 simulations

during their period of overlap (Fig. 4c). This agreement is

to be expected as the variances lt are primarily a feature

of the reconstruction, which is the same across the various

analyses. The proxy-based reconstruction extends to

1990, but owing to a paucity of data, the uncertainty in-

creases over the last decade (Fig. 5c).

When pooling information across the three simulations

at each forcing configuration, the slope b1 increases as

additional forcings are included in the simulations

FIG. 5. As in Fig. 4, but summarizing the hierarchical Bayesian models fit to the CSIRO simulated temperatures

at each of the four forcing scenarios. The comparison is to the reconstruction that predicts past temperatures using

only the proxy observations over the 1400–1990 interval. (a),(b),(d) The colored circles correspond to posterior

means from separate analyses of each of the three ensemble members at each forcing level, while the black circles

show results from pooling information across the three ensemble members.
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(Fig. 5a; Table 5). The uncertainty in the slopes is smaller

for the CSIRO simulations than for the GISS-E2 simu-

lations, and in contrast to results for the GISS-E2 simu-

lation, the posterior credible intervals for the slopes do

not cover unity. For the simulations that include only

orbital forcings, the 95%posterior credible interval forb1

covers zero. For all three simulations including at least

the greenhouse gas forcing, the 95% posterior credible

intervals for each slope parameter are greater than zero.

The addition of greenhouse gas and volcanic forcings

results in substantial increases in b1, whereas the in-

clusion of the solar forcing has a much smaller effect. The

presence of a common signal between the reconstructions

and simulations becomes more apparent when green-

house gas and volcanic forcings are included.

The discrepancy variances t2 follow the same pattern

as the slopes, with a near-zero value for the orbital-only

forcing configuration and significant increases with the

inclusion of greenhouse gas and volcanic forcings

(Fig. 5b). The slopes and discrepancy variances gen-

erally increase in tandem with one another, making it

difficult to use them to compare the agreement be-

tween the reconstructed climate and the various sim-

ulations; that is, as the linear relationship between the

simulated and reconstructed forced response becomes

steeper, there is generally more spread about the line of

best fit. The variance fraction yf is a useful metric for

comparing results in this case, as it combines the

competing effects of greater variability about a stron-

ger slope into a single measure.

The variance fractions yf generally increase when

additional forcings are included (Fig. 5d), indicating

that a progressively larger fraction of the variability in

the simulated forced response can be explained by

linear dependence on the forced response from the

reconstruction. The posterior distributions of variance

fractions feature substantial overlaps and are generally

smaller than for the GISS-E2 simulations.

Overall, numerical summaries suggest that the

agreement with the reconstructions is weaker for the

CSIRO simulations as compared with the GISS-E2

simulations. A possible explanation is the different time

spans covered by the two comparisons in combination

with the post-1850 interval excluded from the GISS-E2

analysis featuring a prominent trend in temperatures.

Another possible explanation is the stronger time series

dependence observed in the CSIRO control run leading

to more residual dependence in the discrepancies.

There is considerable variability in results when fitting

the Bayesian model separately for each of the three

simulations at each forcing level (Fig. 5). For all simu-

lations, the posterior mean of both the slope b1 and

discrepancy variance t2 are smallest for the orbital-only

simulations and are largest when all forcings are in-

cluded. Results for the two intermediate forcings sce-

narios are unclear, which is to be expected given that,

when pooling across the three simulations, the corre-

sponding posterior distributions are so similar. The

variance fractions yf likewise feature variability be-

tween the three simulations, with generally smaller

values for the orbital-only simulation and generally

larger values when all forcings are included. The size,

and even the direction, of changes in yf as additional

forcings are included, however, varies between the three

ensemble members. The variability of results across the

three ensemble members points to the value of running

numerous simulations at each forcing configuration in

this type of experiment, as conclusions based on a single

simulation may not be robust.

Several variations of the analysis choices are worth

discussing (Fig. 6). In the same manner as for the GISS-

E2 simulations, we first exclude years that may be

strongly affected by volcanism and, separately, decadal-

average both the simulations and reconstructions. To

avoid any potential issues associated with the late

twentieth-century divergence of tree-ring density re-

cords from temperatures [for further discussion, see

Tingley and Huybers (2013)], we perform separate fits

after curtailing the proxy-based reconstruction at 1960

(labeled P6 on the x axis in Fig. 6). Finally, we fit the

Bayesian model using reconstructions that use both the

proxy and instrumental datasets to predict past tem-

peratures, ending the reconstruction in either 1960 or

1990 (labeled I6 and I9, respectively, in Fig. 6). As there

are four forcing combinations, these variations result in a

total of 48 model fits (Fig. 6); we briefly summarize a few

patterns that emerge from these exercises, noting that

the same caveats apply as with the GISS-E2 analysis.

TABLE 5. Posterior means and 95% credible intervals (in parentheses) for a selection of parameters in the hierarchical Bayesianmodel,

for fits to the four ensembles of CSIRO simulations, each with a different forcing configuration. Rows in boldface indicate posterior

credible intervals for the slope parameter b1 that do not include zero.

Model b1 t2 yf

O 20.047 (20.113, 0.014) 0.002 (0.001, 0.004) 0.062 (0.000, 0.223)

OG 0.246 (0.150, 0.346) 0.015 (0.011, 0.019) 0.176 (0.065, 0.317)

OGS 0.252 (0.149, 0.351) 0.016 (0.012, 0.020) 0.166 (0.061, 0.289)
OGSV 0.374 (0.262, 0.491) 0.025 (0.020, 0.030) 0.224 (0.111, 0.346)
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1) Excluding volcanic years. The most notable change

is a decrease in the slope parameter b1 for the

simulations that include volcanic forcing. Excluding

years that are strongly affected by volcanism de-

creases the strength of linear association between the

reconstructions and the simulations, and results for

simulations that include volcanic forcing move to-

ward the results for simulations that exclude volcanic

forcing (Fig. 6). This feature conforms to intuition: if

there is good agreement between the simulated and

reconstructed responses to major eruptions, then

removing those years should decrease the agreement

between them. Results therefore suggest that the hi-

erarchical Bayesian model is capable of identifying

important aspects of agreement, or disagreement,

between the reconstructed and simulated climates.

2) Decadal averages. Rerunning the analysis using de-

cadal averages has a similar effect on the slopes b1,

discrepancy variances t2, and time-varying variances

lt as seen for the analysis of the GISS-E2 simula-

tions. Most notably, the posterior means of the

variance fractions are generally smaller as compared

FIG. 6. Summary of results from applying the Bayesian model to the CSIRO simulations and the reconstructions in a number of ways:

(left)–(right) b1, t
2, and yf and (top)–(bottom) analysis on all annual values, after omitting the volcanic years, and after decadal

averaging. Within each panel, O, OG, OGS, and OGSV indicate the forcings that are included in the simulations. For each forcing

configuration, P9, I9, P6, and I6 indicate the data that are included in the reconstruction (P 5 proxy only; I 5 proxy and instruments)

and the end point of the comparison (6 for 1960 and 9 for 1990).
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with the annual-scale analysis, and the posterior

distributions feature greater variability. We interpret

these features as indicating that the agreement

between the CSIRO simulations and the reconstruc-

tions is better at shorter time scales.

3) Proxy-based reconstruction, 1400–1960. As com-

pared with the analysis over 1400–1990, the slope

parameters are moderately smaller and there is a

noticeable decrease in the discrepancy variances,

particularly for the simulations that exclude volca-

nic forcing. According to the variance fraction, the

simulations that include orbital, greenhouse gas,

and solar forcing now feature, on the annual scale,

the best agreement with the reconstruction. On the

annual scale, the subsequent addition of volcanic

forcing reduces the posterior mean of the variance

fraction, though the posterior distributions feature

considerable overlap. On the decadal scale, the

addition of the volcanic forcing increase the vari-

ance fraction.

4) Instrumental and proxy-based reconstruction, 1400–

1990 and 1400–1960. For analyses that extend to

1990 (I90 in Fig. 6), there are small increases in the

slopes, as compared with the proxy-only reconstruc-

tion (P9), and generally small decreases in the

discrepancy variances. There are also substantial

increases in the variance fraction for all simulations

that include greenhouse gas forcings. As the post-

1960 interval features rapid rises in both greenhouse

gas concentrations and temperatures as well as possi-

ble divergence between tree-ring densities and tem-

peratures, the increased agreement that results from

including the instruments in the reconstruction is

expected.

Including the instruments does not have the same

effect for analyses that extend only to 1960. Simula-

tions that include greenhouse gas forcing then feature,

in terms of posterior means, decreases in the slope,

increases in the discrepancy variances, and decreases

in the variance fractions as compared with the proxy-

only reconstructions. However, there are substantial

overlaps in the posterior distributions of the three

diagnostics (b1, t
2, and yf ), so we caution against over-

interpreting this result.

5. Extensions and connections with other methods

a. Possible extensions

The statistical framework we develop here can be

extended or generalized in a number of ways. The prior

specification of temporal independence for the forced

response is likely not appropriate, as the major forcing

types—greenhouse gas, volcanic, and solar—each have

characteristic time series properties. Volcanic forcing is

intermittent and features a strong negative skew, solar

forcing features smooth centennial-scale variability, and

greenhouse gas forcing is nearly monotonic over the

1400–1990 interval. Including prior information about

the differing time series properties of the forcings may

improve inference. One possible approach would be

to further decompose FM
t and FP

t into individual

forced responses, each with a different time series

model. It would then be possible to study the agreement

between each component of FM
t and FP

t . Although more

accurate statistical models can yield better inferences, a

more involved statistical model could also complicate

the interpretation of the discrepancy between the re-

constructions and the simulations. Another possible

extension could involve time-scale decompositions

(e.g., using a wavelet transformation; Percival and

Walden 2000) of both the simulations and recon-

structions to discriminate between the series over dif-

ferent temporal scales.

Here we have focused on large-scale spatial-average

temperatures. As both the simulations and re-

constructions provide spatially complete temperature

fields, spatial averaging can be at any scale, and the static

model could then be applied regionally or even locally.

Note that as averaging areas become smaller, the ratio of

forced to internal variability (akin to a signal-to-noise

ratio) becomes larger, and the inference on the re-

gression parameters linking the forced and simulated

climates will become more uncertain. Alternatively, the

analysis could be generalized to include a spatial com-

ponent so that FP and FM are modeled as space–time

processes. Some prior information about the space–time

covariance of the forced response will be necessary to

achieve inference with a reasonable assessment of un-

certainty. Any spatial extension may require developing

more nuanced measures of simulation–reconstruction

discrepancy, as some simulations may feature spatial

patterns that are broadly correct but perhaps shifted or

rotated. In this regard, see Heaton et al. (2015) for an

example of a model calibration analysis that allows for

spatial realignment.

b. Comparison with other studies

Our development shares similarities with the model

presented in Sundberg et al. (2012), applied in Hind

et al. (2012) and Hind and Moberg (2013), and gener-

alized in Moberg et al. (2015), which also casts the

problem as a regression between latent quantities [cf.

statistical model 1 from Sundberg et al. (2012) to Eq.

(4)]. However, Sundberg et al. (2012) do not estimate

the parameters of their statistical model [see discussion
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in section 9 of Sundberg et al. (2012)] but rather define

tests of the significance of a correlation and distance

metric to assess model–reconstruction agreement.

Moreover, the distancemetric is interpretable only if the

correlation measure is significant. In contrast, our ap-

proach provides interpretable results for all diagnostics

(b1, t
2, and yf ) even if, as is the case for the GISS-E2

simulations that exclude volcanic forcing, there is no

apparent shared variability between the simulation and

reconstruction.

The statistic T in Sundberg et al. (2012) is used to test

if the squared difference between reconstructed climate

and a forced simulation is significant with respect to a

null that assumes the forced simulation is equivalent to

an unforced simulation. In contrast, the t2 variance pa-

rameter we use above measures the average squared

distance between the forced components of the simu-

lation and reconstruction, and we use t2 to compare the

agreement between a single reconstruction and a num-

ber of forced simulations. Moberg et al. (2015) gener-

alize the model of Sundberg et al. (2012) to permit

autoregressive time series dependence in the unforced

simulations. In contrast to our approach of fitting the

parameters of a latent regression model assuming cor-

related errors, Moberg et al. (2015) adjust the variances

of test statistics introduced in Sundberg et al. (2012) to

account for the assumed serial correlation.

Finally, Moberg et al. (2015) apply their model to 15

tree-ring records and an ensemble of climate simula-

tions comprising single-forcing configurations (either

solar, volcanic, or land cover change, with constant

preindustrial greenhouse gas forcing) and a multiple-

forcing configuration (solar, volcanic, land cover change,

orbital, greenhouse gas, and nonvolcanic aerosol forcing)

conducted using two separate amplitudes of solar forcing.

In agreement with our findings from the CSIRO analysis,

Moberg et al. (2015) find evidence that simulations that

include multiple forcing feature greater agreement with

the information from the proxies than those that include

only a single forcing. In agreement with our findings from

theGISS-E2 analysis, Moberg et al. (2015) find it difficult

to discern between the two amplitudes of solar forcing

they consider. We refrain from more detailed compari-

sons as both the climate simulations and proxy in-

formation differ between the two studies.

c. Climate reconstruction via data assimilation

A related research problem concerns the optimal es-

timation of past climate from all available sources: cli-

matemodels, proxies, and the instrumental record. Each

of these data sources is inadequate in some way, be it

due to a short time span (instrumental record), a diffi-

culty in quantifying relationships with latent climate

processes (proxies), or an imperfect representation of

physical climate processes (climate models). In this ar-

ticle we have limited ourselves to a one-way flow of in-

formation, whereby the proxy-based reconstruction

informs a basis for selection between climate simula-

tions. Allowing information from the simulations to

adjust the proxy-based reconstruction would require a

statistical framework that links each source of in-

formation to a latent climate process, and the estimation

of that process would then mix across these sources of

information. The utility of such an estimate is limited,

however, as the mixing of information from the simu-

lations and reconstructions precludes using the resulting

climate estimate to assess model performance. A related

line of research involves applying data assimilation

techniques to reconstruct past climate (e.g., Steiger

et al. 2014).

d. Detection and attribution

There are connections between the statistical model

we use here and the optimal fingerprinting framework

used in detection and attribution (D&A) studies (e.g.,

Hegerl et al. 2000). D&A studies generally assume that

the forced response in the observations is linear in a

number of patterns, or fingerprints, each corresponding

to a particular forcing. The detection step then proceeds

by determining whether estimates of coefficients in the

regression of the observed climate onto the fingerprints

are significantly greater than zero. Note that the di-

rection of the regression is opposite to that used here, as

we regress the simulated forced response on the re-

constructed forced response. In contrast to D&A, our

current interest is not in detecting the effects of partic-

ular forcings on the observed or reconstructed climate

but rather in determining if the proxy-based re-

constructions are able to select in some fashion between

simulations conducted under different forcing scenarios.

Further discussion of these issues is available in

Sundberg et al. (2012).

e. Computer model calibration

Computer model calibration is an active area of re-

search (e.g., Forest et al. 2002; Sansó et al. 2008; Bhat

et al. 2012; Chang et al. 2014, in the context of climate

models) that shares characteristics with the simulation–

reconstruction comparisons developed here. Computer

model calibration focuses on learning about unknown

parameters of a complex computer model. These pa-

rameters are inputs to the computer model that affect

the output produced by the model. In the context of

climate models the parameters may represent, for in-

stance, constants that describe the dynamics of the cli-

mate system or some approximate representations of
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aggregate phenomenon (‘‘parameterization’’). Com-

puter model calibration involves comparing, in a statis-

tically rigorous fashion, computer model output run at

various parameter settings to observational data, taking

into account systematic discrepancies between the

computer model and the observations along with mea-

surement error in the observations (cf. Bayarri et al.

2007). Learning about the parameters may be of interest

in its own right—for instance when the parameter is

climate sensitivity (cf. Forest et al. 2002). Alternatively,

inferred distributions of the parameters may be used to

characterize climatemodel projections and to propagate

parametric and other uncertainties into the projection

uncertainty.

In contrast, our aim has been to explore the capability

of a proxy-based reconstruction to select among dispa-

rate modeling configurations and forcings, and we have

treated the climate model experiments as ensembles of

opportunity. We are therefore limited to exploring

whether the climate reconstructions support a particular

model configuration and forcing scenario over another

and have not studiedwhat themost probable values for a

parameter might be, given the reconstructions and

simulations. Uncertainties about model configurations

and forcing scenarios, neither of which may be easily

translatable into parameters, can result in larger pro-

jection uncertainties than uncertainties due to model

parameters. It is possible that, in future work, our

methods may be useful in conjunction with climate

model calibration approaches. This would be one more

step in the direction of capturing the various complex

uncertainties that go into studies of climate change (e.g.,

Katz et al. 2013).

6. Conclusions

We have developed a hierarchical Bayesian model for

comparing simulated and reconstructed spatially aver-

aged climate time series. A key challenge in this exercise

is that any shared variability between the simulated and

reconstructed climates is due to a common response to

external forcing, whereas we observe in each case the

sum of the forced responses and independent re-

alizations of internal variability.

In diagnosing the agreement between the recon-

structed and simulated components, we make use of the

slope b1 and error variance t2 in the regression linking

their respective forced components [Eq. (4)]. The slope

is an indication of the strength of the relationship be-

tween the two forced components (the larger the slope,

the stronger the relationship), whereas the error vari-

ance is a measure of the uncertainty about the best-fit

linear relationship. In practice, we find that the error

variance and slope increase in tandem so that an esti-

mate of the fraction of variability in the simulated forced

response that is attributable to the reconstructed forced

response yf [Eq. (5)] is a useful metric for assessing

simulation–reconstruction agreement.

Results for both the GISS-E2 and CSIRO simulations

point to the possibility, but also the challenge, of using

paleoclimate reconstructions to discriminate between

climate simulations run under different estimates of

prehistorical forcings. As the link is between quantities

that are not directly observed, inferences are uncertain,

and we are able to distinguish between only the broadest

differences in the forcing configurations used to gener-

ate the two ensembles of simulations. For the GISS-E2

ensemble, we correctly identify simulations using the

CEA volcanic forcing as being in better agreement with

the reconstruction than simulations that exclude volca-

nic forcing or that use a volcanic forcing that is unrea-

sonably strong. Differences between simulations that

use the CEA volcanic forcing are more difficult to de-

tect, as the posterior distributions of the diagnostic pa-

rameters (b1, t
2, and yf ) feature substantial overlap. For

the CSIRO ensemble, there is a general increase in

agreement as additional forcings are included, but over-

all, as measured by the variance ratio, the agreement

between the reconstructions and simulations is lower

than for the GISS-E2 simulations. Results vary among

the three CSIRO simulations conducted at each forcing

configuration, with even the ordering of simulations, as

measured by the variance fraction, changing within the

three-member ensemble. These results point to the im-

portance of including multiple simulations at a given

forcing configuration in such experiments.

One of the main uses of climate models is to project

future climate under estimates of future forcings

(Collins et al. 2013). The paleoclimate record can serve

as an important test bed for assessing model sensitivity

and parameterizations, as the models are primarily

tuned to agree with instrumental, rather than proxy,

observations (Flato et al. 2013). Our results suggest that

reconstructions are sufficiently informative to select

between the broad features of simulations from a given

climatemodel conducted under different climate forcing

configurations. A more ambitious goal, and a subject of

future research, is to use proxy–model comparisons to

select between climate model configurations with dif-

ferent sensitivities or to weight an ensemble of future

projections, each based on a climate model with a dif-

ferent sensitivity, based on the level of agreement with

proxy-based reconstructions.
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