CLIM3001

Using the CSIRO Mk3L climate system model Part 3: Configuring Mk3L

Steven J. Phipps

Climate Change Research Centre ARC Centre of Excellence for Climate System Science University of New South Wales

Overview

- Input files
- The control file
- Auxiliary files
- Design your own experiment Part 1
- Analysing experiments
- Advanced configuration
- \bullet Design your own experiment Part 2

Input files

Reminder: Input files

• The model requires three types of input files:

control file configures the model for a particular simulationrestart file(s) initialise(s) the model at the *start* of a simulationauxiliary files provide the boundary conditions *during* a simulation

- The model may be configured for a particular scenario by modifying one or more of these files
- See Chapters 4 and 5 of the Users Guide for further information

The control file

The control file

• To run the model, you use a command such as:

```
./model < input > output
```

- The file input is the *control file*
- This file contains a number of namelist groups
- The parameters contained within these groups specify:
 - the duration of a simulation
 - the physical configuration of the model
 - which model variables are to be saved

namelist groups

• A namelist group looks like this:

&control
 lcouple=T
 locean=F
 mstep=20
 nsstop=0
 ndstop=1
 lastmonth=0
 months=0
 nrad=6
&end

nano

- nano is a simple Linux text editor
- To edit a file, enter the command:

nano <file>

- Some basic nano commands are:
 - Ctrl-G Get Help
 - Ctrl-0 Write (Save)
 - Ctrl-X Exit

Exercise 1: nano

• Change to the directory containing the test scripts:

cd ~/CSIRO_Mk3L/version-1.2/core/control/

• Create a copy of one of the control files, using a command such as:

cp input_cpl_1day input_copy

• Use nano to examine and edit this file.

locean, lcouple

These parameters determine the mode in which the model is to run:

locean=T	Stand-alone ocean mode (this overrides lcouple)
locean=F, lcouple=F	Stand-alone atmosphere mode
locean=F, lcouple=T	Coupled mode

nsstop, ndstop, lastmonth, months

For the coupled model and stand-alone atmosphere model, these determine the duration of the simulation:

nsstop	Stop after nsstop timesteps
ndstop	Stop after ndstop days
lastmonth	Stop at the end of calendar month lastmonth
	(1=January, 2=February,, 12=December)
months	Stop after months months

The first of these to have a non-zero value is the one which takes effect

iocmn, iocyr

For the stand-alone ocean model, these determine the duration of the simulation:

- iocmn < 12 Stop after iocmn months
- iocmn = 12 Stop after iocyr years

bpyear, csolar

- bpyear specifies the epoch, in years before present (where the "present" is the year 1950 CE)
- csolar specifies the solar constant, in Wm^{-2}

runtype

• runtype specifies the name of the experiment

Atmosphere model output: monthly

• This is controlled by the parameter **statsflag**:

statsflag=T Save monthly-mean statisti	ics
--	-----

- statsflag=F Don't save this data
- The parameters in the group statvars control which variables are to be saved see Section 4.2.3 of the Users Guide

Atmosphere model output: "daily"

• This is controlled by the parameters **savehist** and **hist_interval**:

savehist=T Save "daily" statistics
hist_interval=1440 Save these statistics every 1440 minutes

- It's possible to save statistics at two different frequencies see Section 4.2.2 of the Users Guide
- The parameters in the group histvars control which variables are to be saved see Section 4.2.4 of the Users Guide

Ocean model output

- The ocean model saves monthly-mean statistics only
- This is controlled by the parameters in the group **osave** e.g.
 - save_temp=TSave the potential temperaturesave_sal=TSave the salinitysave_over=TSave the meridional overturning streamfunctions
- See Table 4.11 of the Users Guide

Exercise 2: Basic namelist options

• Look at the control files in the following directories:

~/CSIRO_Mk3L/version-1.2/core/control/ ~/week2/exp0?/

• Find the following parameters, and see how the values differ:

locean, lcouple
nsstop, ndstop, lastmonth, months
iocmn, iocyr
bpyear, csolar
runtype

Auxiliary files

Changing the atmospheric CO_2 concentration

- The CO₂ transmission coefficients are read from an auxiliary file
- These files are generated by the utility radint
- To compile and initialise this utility, change to the following directory:

cd ~/CSIRO_Mk3L/version-1.2/pre/co2/

• Now enter the commands:

make

./pset -n 18

Changing the atmospheric CO_2 concentration

• To generate the auxiliary file for an atmospheric CO₂ concentration of <concentration> ppm, enter the command:

./radint -c <concentration>

• For example, for a CO_2 concentration of 280 ppm:

./radint -c 280

• This generates a file called co2_data, which you should rename

Applying freshwater hosing

• To apply freshwater hosing, use these namelist parameters:

hosing_flag	If T, apply freshwater hosing
hosing_rate	The freshwater hosing rate (Sv)

- You must also supply the auxiliary file hosemask
- A sample auxiliary file is provided with the model:

~/CSIRO_Mk3L/version-1.2/core/data/atmosphere/hosing/hosemask

Design your own experiment Part 1

Design your own experiment - Part 1

- Design your own experiment.
- Run the coupled model for six months on 4 cores.

Analysing your experiments

Advanced Ferret commands

Turns off the Ferret logo
Specifies a plot title
Use a spacing of 1.0 between contour levels
Use a spacing of 1.0 and centre around zero
Overlay contours
Overlay contours without adding a label
Overlay continental boundaries
Save the image to the file file.gif

• Much, much, much more at:

http://ferret.pmel.noaa.gov/Ferret/documentation/users-guide

Exercise 3: Advanced Ferret commands

• Load and run Ferret:

module load ferret
ferret

• Within Ferret, load the sample atmosphere model output:

yes? use stsc_spi62.nc

Exercise 3: Advanced Ferret commands

• Type the following commands:

```
yes? cancel mode logo
yes? fill/title="Screen temperature (K)" tsc[k=@ave,l=@ave]
yes? go land
yes? frame/file=temperature.gif
```

• Now try generating some different plots...

Getting files from tensor

- Launch PSFTP:
 - Programs > PuTTY > PSFTP
- Change to the H drive on your local machine:
 - psftp> lcd h:
- Connect to tensor:
 - psftp> open tensor.maths.unsw.edu.au
- Log in using your zNumber and zPass
- Change to the appropriate directory on tensor e.g.
 - psftp> cd ~/week2
- Get the file you want e.g.
 - psftp> get temperature.gif

Exercise 4: Analyse your experiment

- Now that you know what you did last week, analyse the output of your experiment.
- Did it work?
- Use Ferret to plot the output of the model.
- Generate some GIF images and copy the files back to your local machine.

Advanced configuration

Summary: Basic configuration

- What we've covered so far:
 - How to configure the model via the control file
 - How to change the atmospheric CO_2 concentration by generating a new auxiliary file
 - How to apply freshwater hosing
- This enables you to vary:
 - the epoch
 - the solar constant
 - the atmospheric CO_2 concentration
 - the freshwater flux into the ocean
 - which model statistics are saved

Advanced configuration

- There are three other ways of configuring aspects of the model:
 - Modify the other auxiliary files
 - Modify the restart file(s)
 - Modify the source code

Auxiliary files: atmosphere model

- Bottom boundary conditions:
 - Sea surface temperatures (ssta.nc)
 - Ocean currents (ocuv.nc)
 - Topography (psrk.nc)
 - Albedo (albedo.nc)
 - Vegetation and soil types (sib*.nc)
- Radiative boundary conditions:
 - CO_2 transmission coefficients (co2_datafile)
 - Ozone mixing ratios (amip2o3.dat)

Auxiliary files: ocean model

- Upper boundary conditions:
 - Sea surface temperatures (sst.nc)
 - Sea surface salinities (sss.nc)
 - Surface wind stresses (stress.nc)
- Bottom boundary conditions:
 - Bathymetry (orest.nc restart file)

Auxiliary files: coupled model

- Bottom boundary conditions:
 - Topography (psrk.nc, landrun21)
 - Bathymetry (orest.nc)
 - Albedo (albedo.nc)
 - Vegetation and soil types (sib*.nc)
- Radiative boundary conditions:
 - CO_2 transmission coefficients (co2_datafile)
 - Ozone mixing ratios (amip2o3.dat)
- Freshwater hosing (hosemask)
- Flux adjustments (dtm.nc, *cor.nc)

Examples of advanced configuration

- Applying anomalies within the atmosphere and ocean models:
 modify the SSTs, SSSs, currents, wind stresses
- Applying anomalies within the coupled model:
 - modify the flux adjustments
- Configuring the model for a different era:
 - modify the topography and bathymetry
 - modify the albedo, and the vegetation and soil types
 - modify the epoch, solar constant, CO_2 transmission coefficients, ozone mixing ratios
 - issues with restart files, spin-up procedures and flux adjustments

Design your own experiment Part 2

Design your own experiment - Part 2

- Analyse the output of your experiment.
- Did it work? If not, why not?
- Use Ferret to plot the output of the model.
- If it worked, now run it for 10 years (or longer!).
- If it didn't work, try again.