

Using the CSIRO Mk3L climate system model Part 4: Consolidation and next steps

Steven J. Phipps ARC Centre of Excellence for Climate System Science Climate Change Research Centre University of New South Wales

> CLIM3001 30 May 2013

2 Advanced configuration options

1. Analyse your own experiment

Analyse your own experiment

- Analyse the output of your experiment.
- Did it work? If not, why not?
- Use Ferret to plot the output of the model.
- Generate some GIF images and copy the files back to your local machine.
- If it worked, maybe you could run additional experiments?
- If it didn't work, fix it and try again.

More advanced Ferret commands

```
• Datasets and variable definitions:
```

```
use stsc_exp01.nc
use stsc_exp04.nc
let dt = tsc[d=2] - tsc[d=1]
```

Setting up the plot window:

```
set window n
set window/size=1.0
set window/aspect=0.7
```

Send graphics to window n Resize window to 1.0 of full Change aspect ratio to 0.7

More advanced Ferret commands

Plot layout:

set viewport ll set viewport left set viewport upper Lower left of window [also: lr, ul, ur] Left half of window [also: right] Upper half of window [also: lower]

Colour palettes:

palette blue_darkred
spawn Fpalette '*'
go try_palette blue_darkred

User colour palette blue_darkred List all available palettes Display palette blue_darkred

More advanced Ferret commands

Customising plots:

<pre>shade/set_up/options</pre>	data
ppl commands	
ppl shade	

Set up a plot Customise the plot using ppl Generate the plot

• fill, plot and shade options:

shade/levels=2d
shade/levels=2dc
shade/hlimits=0:10:1
shade/vlimits=0:10:1
shade/title="..."

Use a spacing of 2 between levels Ditto, with the levels centred around zero Horizontal axis range and interval Vertical axis range and interval Set the plot title to ...

More advanced Ferret commands

• ppl commands:

ppl	labset	Sets character heights for labels
ppl	axlsze	Sets axis label heights
ppl	shakey	Controls the shade key
ppl	axlint	Sets numeric label interval for axes
ppl	xfor	Sets format of x-axis numeric labels
ppl	yfor	Sets format of y-axis numeric labels
ppl	xlab	Sets label of x-axis
ppl	ylab	Sets label of y-axis

More advanced Ferret commands

- Other commands:
- go margins
 go remove_logo
 go unlabel n
 go land
- Adjust the margins surrounding a plot Remove the Ferret logo Remove label n ($n \ge 4$) Overlay continental boundaries
- Much, much, much more at:

http://ferret.pmel.noaa.gov/Ferret/documentation/users-guide

Ferret scripts

- It is not necessary to re-type Ferret commands every time you want to generate a plot.
- Instead, you can write a Ferret script.
- A script contains:
 - a series of Ferret commands
 - comment lines (lines beginning with !)
- A Ferret script can be identified by a file name ending in .jnl.
- To run a script, use the go command.
- For example, to run a script called plot.jnl you type:

yes? go plot

Exercise 1: Ferret scripts and plotting

- Log in to katana and get the course material for today:
 cd
 tar zxvf /srv/scratch/z3210932/week4.tar.gz
- This contains three Ferret scripts.
- Load and run Ferret. Now run each script by typing e.g. yes? go plot1
- What happens?
- Examine each script using less or nano. See how the new Ferret commands that you have learnt today are being used.
- Try editing some of the scripts to generate new plots.

Getting files from katana

 Mount your H drive by entering the command: network

- You will need to enter your zPass. This creates the directory:
 - ~/hdrive
- Your can copy/move files to this directory.
- The contents of this directory can be accessed in two ways:
 - from within Windows (as the H: drive)
 - online via http://myfiles.unsw.edu.au
- To access files online via the UNSW File System, you will need to log in using your zNumber and zPass. You will then find the contents of your H drive under My Home Drive.

2. Advanced configuration options

Summary: Basic configuration options

- What we've covered so far:
 - How to configure the model via the control file
 - How to change the atmospheric CO₂ concentration by generating a new auxiliary file
 - How to apply freshwater hosing
- This enables you to vary:
 - the epoch
 - the solar constant
 - the atmospheric CO₂ concentration
 - the freshwater flux into the ocean
 - which model statistics are saved

Overview

Next steps

Advanced configuration options

• There are three other ways of configuring aspects of the model:

- Modify the other auxiliary files
- Modify the restart file(s)
- Modify the source code

Auxiliary files: atmosphere model

- Bottom boundary conditions:
 - Sea surface temperatures (ssta.nc)
 - Ocean currents (ocuv.nc)
 - Topography (psrk.nc)
 - Albedo (albedo.nc)
 - Vegetation and soil types (sib*.nc)
- Radiative boundary conditions:
 - CO₂ transmission coefficients (co2_datafile)
 - Ozone mixing ratios (amip2o3.dat)

Auxiliary files: ocean model

- Upper boundary conditions:
 - Sea surface temperatures (sst.nc)
 - Sea surface salinities (sss.nc)
 - Surface wind stresses (stress.nc)
- Bottom boundary conditions:
 - Bathymetry (orest.nc restart file)

Auxiliary files: coupled model

- Bottom boundary conditions:
 - Topography (psrk.nc, landrun21)
 - Bathymetry (orest.nc)
 - Albedo (albedo.nc)
 - Vegetation and soil types (sib*.nc)
- Radiative boundary conditions:
 - CO₂ transmission coefficients (co2_datafile)
 - Ozone mixing ratios (amip2o3.dat)
- Freshwater hosing (hosemask)
- Flux adjustments (dtm.nc, *cor.nc)

Auxiliary files: coupled model

- Bottom boundary conditions:
 - Topography (psrk.nc, landrun21)
 - Bathymetry (orest.nc)
 - Albedo (albedo.nc)
 - Vegetation and soil types (sib*.nc)
- Radiative boundary conditions:
 - CO₂ transmission coefficients (co2_datafile)
 - Ozone mixing ratios (amip2o3.dat)
- Freshwater hosing (hosemask)
- Flux adjustments (dtm.nc, *cor.nc)

Examples of advanced configuration

- Applying anomalies within the atmosphere and ocean models:
 - modify the SSTs, SSSs, currents, wind stresses
- Applying anomalies within the coupled model:
 - modify the flux adjustments
- Configuring the model for a different era:
 - modify the topography and bathymetry
 - modify the albedo, and the vegetation and soil types
 - modify the epoch, solar constant, CO₂ transmission coefficients, ozone mixing ratios
 - issues with restart files, spin-up procedures and flux adjustments

• Get a copy of Mk3L. Apply for an account on the subversion server:

http://www.tpac.org.au/resources/csiro-mk31-source-code/

- Run Mk3L on katana, on your PC, on your laptop...
- Experiment with the model and get to know it.
- Subscribe to the mailing list:

https://www.lists.unsw.edu.au/mailman/listinfo/mk31-users

Next steps

Ask questions:

Mk3L users mailing listmk31-users@lists.unsw.edu.auMes.phipps@unsw.edu.au

- Share your experiences with other users.
- Share your enhancements to the model.
- Remember what a privilege it is to be a climate system modeller.
- With great power comes great responsibility.
- Have fun!