Using the CSIRO Mk3L climate system model Part 2: Working with Mk3L

Steven J. Phipps ARC Centre of Excellence for Climate System Science Climate Change Research Centre University of New South Wales

> CLIM3001 14 May 2014

1 Running Mk3L for one day

2 Running Mk3L for 10 years

3 Your first model experiment

Analysing experiments

1. Running Mk3L for one day

Running Mk3L for one day

- You did this last week!
- The steps involved in running the model were as follows:
 - Create a run directory
 - Copy everything that you need to this directory
 - Run the model

Exercise 1: Running Mk3L for one day

- Change back to the directory containing the test scripts:
 - cd ~/CSIRO_Mk3L/version-1.2/core/scripts
- The script qsub_test_cpl runs the coupled model for one day
- Using the less command, examine this script carefully
- Remember that lines beginning with # are comments
- Look for the sections that do the following:
 - create the run directory
 - copy everything to this directory
 - run the model

2. Running Mk3L for 10 years

s Your first model experiment Analysing experime

Running Mk3L for 10 years

• This involves the same steps as running the model for one day:

- Create a run directory
- Put everything there
- Run the model
- For the ocean model, it's exactly the same
- However, the atmosphere model and coupled model can only be run for one year at a time
- So, in this case, we need to re-initialise the model at the start of each year

Analysing experiments

Exercise 2: Running Mk3L for 10 years

• Get the course material for today:

cd tar zxvf /srv/scratch/z3210932/week2.tar.gz cd ~/week2

- The script qsub_10years runs the coupled model for 10 years
- Using the less command, examine this script carefully
- How does it differ from the script which runs the model for one day?

Portable Batch System (PBS) options

• The script that you just examined includes the following lines:

- **#PBS** -1 walltime=24:00:00
- **#PBS** -1 vmem=1gb
- **#PBS** -1 nodes=1:ppn=4
- These request the resources needed to run the job
- The job is expected to take up to 24 hours (walltime)
- The job will require up to 1 GB of memory (vmem)
- We want to run on one node (nodes) and four cores (ppn)
- When you design your own experiments, walltime is the only option that you might need to change

3. Your first model experiment

Exercise 3: Your first model experiment

• Choose one of the following experiments:

exp01	Control simulation		
exp02	Mid-Holocene (6,000 years BP)		
exp03	Last Glacial Maximum (21,000 years BP)		
	Snowball Earth		
exp05	$2 \times CO_2$		
exp06	Water hosing		
Carlos Carlos Carlos			

• Each experiment has already been set up for you

Exercise 3: Your first model experiment

- For your experiment, change to the appropriate directory e.g.
 - cd ~/week2/exp01
- Now start your experiment e.g.

qsub qsub_exp01

- Look at the script which carries out each experiment
- How does it differ from the control simulation (exp01)?
- What would you change if you wanted to run your experiment for 50 years, rather than 10 years?

4. Analysing experiments

Getting files from katana

- Mount your H drive by entering the command: network
- You will need to enter your zPass. This creates the directory:
 - ~/hdrive
- Your can copy/move files to this directory
- The contents of this directory can be accessed in two ways:
 - from within Windows (as the H: drive)
 - online via http://myfiles.unsw.edu.au
- To access files online via the UNSW File System, you will need to log in using your zNumber and zPass. You will then find the contents of your H drive under My Home Drive.

More Ferret commands

cancel mode logo fill/title="My title" fill/lev=1d fill/lev=1dc contour/over contour/over/nolab go land frame/file=file.gif Turns off the Ferret logo Specifies a plot title Use a spacing of 1.0 between contour levels Use a spacing of 1.0 and centre around zero Overlay contours Overlay contours without adding a label Overlay continental boundaries Save the image to the file file.gif

- Much, much, much more at:
 - http://ferret.pmel.noaa.gov/Ferret/documentation/users-guide

Exercise 4: More Ferret commands

• Change back to the directory containing today's course material:

cd ~/week2

Load and run Ferret:

module load ferret ferret

Within Ferret, load some atmosphere model output:

```
yes? use stsc_exp01.nc
```

Analysing experiments

Exercise 4: More Ferret commands

• Type the following commands:

```
yes? cancel mode logo
yes? fill/title="Screen temperature (K)" tsc[k=@ave,l=@ave]
yes? go land
yes? frame/file=temperature.gif
```

- Now try generating some different plots...
- Generate some GIF images and copy the files back to your local machine

Analysing experiments

Even more Ferret commands

Datasets and variable definitions:

```
use stsc_exp01.nc
use stsc_exp04.nc
let dt = tsc[d=2] - tsc[d=1]
```

Setting up the plot window:

```
set window n
set window/size=1.0
set window/aspect=0.7
```

Send graphics to window n Resize window to 1.0 of full Change aspect ratio to 0.7

rs Your first model experim

Analysing experiments

Even more Ferret commands

• Plot layout:

set viewport ll set viewport left set viewport upper Lower left of window [also: lr, ul, ur] Left half of window [also: right] Upper half of window [also: lower]

Colour palettes:

palette blue_darkred
spawn Fpalette '*'
go try_palette blue_darkred

User colour palette blue_darkred List all available palettes Display palette blue_darkred

Your first model experiment

Analysing experiments

Even more Ferret commands

• Customising plots:

<pre>shade/set_up/options data</pre>			
ppl commands			
ppl shade			

Set up a plot Customise the plot using ppl Generate the plot

fill, plot and shade options:

shade/levels=2d
shade/levels=2dc
shade/hlimits=0:10:1
shade/vlimits=0:10:1
shade/title="..."

Use a spacing of 2 between levels Ditto, with the levels centred around zero Horizontal axis range and interval Vertical axis range and interval Set the plot title to ...

Analysing experiments

Even more Ferret commands

• ppl commands:

ppl	labset	Sets character heights for labels
ppl	axlsze	Sets axis label heights
ppl	shakey	Controls the shade key
ppl	axlint	Sets numeric label interval for axes
ppl	xfor	Sets format of x-axis numeric labels
ppl	yfor	Sets format of y-axis numeric labels
ppl	xlab	Sets label of x-axis
ppl	ylab	Sets label of y-axis

Analysing experiments

Even more Ferret commands

- Other commands:
- go margins go remove_logo go unlabel n go land

Adjust the margins surrounding a plot Remove the Ferret logo Remove label n (n > 4)Overlay continental boundaries

- Much, much, much more at:
 - http://ferret.pmel.noaa.gov/Ferret/documentation/users-guide

Ferret scripts

- It is not necessary to re-type Ferret commands every time you want to generate a plot
- Instead, you can write a Ferret script
- A script contains:
 - a series of Ferret commands
 - comment lines (lines beginning with !)
- A Ferret script can be identified by a file name ending in .jnl
- To run a script, use the go command
- For example, to run a script called plot.jnl you type:

yes? go plot

Exercise 5: Ferret scripts and plotting

Change back to the directory containing today's course material:

cd ~/week2

- This contains three Ferret scripts
- Load and run Ferret. Now run each script by typing e.g.

yes? go plot1

- What happens?
- Examine each script using less. See how the new Ferret commands that you have learnt today are being used.