Using the CSIRO Mk3L climate system model Part 3: Designing your own experiment

Steven J. Phipps ARC Centre of Excellence for Climate System Science Climate Change Research Centre University of New South Wales

> CLIM3001 21 May 2014

1 Analysing experiments

- 2 Input files
- 3 The control file
- 4 Auxiliary files
- 5 Design your own experiment

1. Analysing experiments

Exercise 1: Analyse your experiment

- Last week you ran your own experiment
- The output was saved in a directory called

/srv/scratch/\$USER/\$run

- /srv/scratch is a global "scratch" directory
- It is used for the temporary storage of data for running jobs
- Now change to the directory for your experiment e.g.

cd /srv/scratch/z3210932/exp01

Analyse the output

Exercise 1: Analyse your experiment

- Use Ferret to analyse and plot the data
- Try using some of the Ferret commands that you've learnt over the past two weeks
- Try adapting some of the scripts from last week, or even try writing your own scripts
- Try looking at variables such as surface air temperature (tsc), precipitation (rnd) or sea-level pressure (psl)
- See Table 4.7 of the Users Guide for a complete list
- For experiment aaaaa, the data for the variable bbb is contained in the file called sbbb_aaaaa.nc e.g. stsc_exp01.nc
- Generate some GIF images and copy the files back to your local machine

2. Input files

Running and configuring Mk3L

• Remember that the three steps involved in running the model are:

- Create a run directory
- Copy everything that you need to this directory
- Run the model
- The "everything" in this second step consists of:
 - The model itself (the "executable")
 - All the input files needed to run the model
- To configure the model for a particular experiment, we need to modify one or more of these input files

Input files

• The model requires three types of input files:

control file configures the model for a particular simulationrestart file(s) initialise(s) the model at the *start* of a simulationauxiliary files provide the boundary conditions *during* a simulation

- The model may be configured for a particular scenario by modifying one or more of these files
- Auxiliary files provide the boundary conditions that the model cannot simulate itself e.g. topography
- See Chapters 4 and 5 of the Users Guide for further information

Design your own experiment

Boundary conditions: atmosphere model

- Bottom boundary conditions:
 - Sea surface temperatures
 - Ocean currents
 - Topography
 - Albedo
 - Vegetation and soil types
- Radiative boundary conditions:
 - CO₂ transmission coefficients
 - Ozone mixing ratios

Boundary conditions: ocean model

- Upper boundary conditions:
 - Sea surface temperatures
 - Sea surface salinities
 - Surface wind stresses
- Bottom boundary conditions:
 - Bathymetry

Boundary conditions: coupled model

- Bottom boundary conditions:
 - Topography
 - Bathymetry
 - Albedo
 - Vegetation and soil types
- Radiative boundary conditions:
 - CO₂ transmission coefficients
 - Ozone mixing ratios

- To run the model, you use a command such as:
 - ./model < input > output
- The file input is the control file
- This file contains a number of namelist groups
- The parameters contained within these groups specify:
 - the duration of a simulation
 - the physical configuration of the model
 - which model variables are to be saved

namelist groups

• A namelist group looks like this:

&control
 lcouple=T
 locean=F
 mstep=20
 nsstop=0
 ndstop=1
 lastmonth=0
 months=0
 nrad=6
&end

Auxiliary files

nano

- nano is a simple Linux text editor
- To edit a file, enter the command:

nano <file>

- Some basic nano commands are:
 - Ctrl-G Get Help Ctrl-O Write (Save) Ctrl-X Exit

Exercise 2: Editing control files

- Change to the directory containing the test scripts:
 - cd ~/CSIRO_Mk3L/version-1.2/core/control
- Create a copy of one of the control files, using a command such as:
 - cp input_cpl_1day input_copy
- Use nano to examine and edit this file

Overview

The control file

Basic namelist options

locean, lcouple

These parameters determine the mode in which the model is to run:

locean=T

locean=F, lcouple=F
locean=F, lcouple=T

Stand-alone ocean mode (this overrides lcouple) Stand-alone atmosphere mode Coupled mode

Basic namelist options

nsstop, ndstop, lastmonth, months

For the coupled model and stand-alone atmosphere model, these determine the duration of the simulation:

nsstop	Stop after nsstop timesteps
ndstop	Stop after ndstop days
lastmonth	Stop at the end of calendar month lastmonth
	(1=January, 2=February,, 12=December)
months	Stop after months months

The first of these to have a non-zero value is the one that takes effect.

Basic namelist options

iocmn, iocyr

For the stand-alone ocean model, these determine the duration of the simulation:

iocmn < 12 Stop after iocmn months iocmn = 12 Stop after iocyr years

Basic namelist options

bpyear, csolar

- bpyear specifies the epoch, in years before present (where the "present" is the year 1950 CE)
- csolar specifies the solar constant, in Wm⁻²

runtype

• runtype specifies the name of the experiment

Atmosphere model output: monthly

- This is controlled by the parameter statsflag:
 - statsflag=T Save monthly-mean statistics
 statsflag=F Don't save this data
- The parameters in the group statvars control which variables are to be saved - see Section 4.2.3 of the Users Guide

Atmosphere model output: daily

• This is controlled by the parameters savehist and hist_interval:

savehist=T Save daily statistics hist_interval=1440 Save these statistics every 1440 minutes

- It's possible to save statistics at two different frequencies see Section 4.2.2 of the Users Guide
- The parameters in the group histvars control which variables are to be saved - see Section 4.2.4 of the Users Guide

Ocean model output

- The ocean model saves monthly-mean statistics only
- This is controlled by the parameters in the group osave e.g.

<pre>save_temp=T</pre>	Save the potential temperature
save_sal=T	Save the salinity
save_over=T	Save the meridional overturning streamfunctions

• See Table 4.11 of the Users Guide

Exercise 3: Basic namelist options

- Look at the control files in the following directories:
 - ~/CSIRO_Mk3L/version-1.2/core/control
 - ~/week2/exp0?
- Find the following parameters, and see how the values differ:

locean, lcouple
nsstop, ndstop, lastmonth, months
iocmn, iocyr
bpyear, csolar
runtype

3. Auxiliary files

Changing the atmospheric CO_2 concentration

- The CO₂ transmission coefficients are read from an auxiliary file
- These files are generated by the utility radint
- To compile and initialise this utility, change to the directory:
 - cd ~/CSIRO_Mk3L/version-1.2/pre/co2
- Then enter the commands:
 - make ./pset -n 18

Changing the atmospheric CO_2 concentration

• To generate the auxiliary file for an atmospheric CO₂ concentration of <concentration> ppm, enter the command:

./radint -c <concentration>

• For example, for a CO₂ concentration of 280 ppm:

./radint -c 280

This generates a file called co2_data

Exercise 4: Changing the atmospheric CO₂ concentration

• Compile and initialise radint by entering the commands

```
cd ~/CSIRO_Mk3L/version-1.2/pre/co2
make
./pset -n 18
```

• Now generate auxiliary files for CO₂ concentrations of 280, 560 and 1120 ppm e.g.

./radint -c 280

• Remember to rename the auxiliary file each time e.g.

```
mv co2_data co2_data.280ppm
```

Applying freshwater hosing

• To apply freshwater hosing, use these namelist parameters:

hosing_flag If T, apply freshwater hosing hosing_rate The freshwater hosing rate (Sv)

- You must also supply the auxiliary file hosemask
- A sample auxiliary file is provided with the model:

~/CSIRO_Mk3L/version-1.2/core/data/atmosphere/hosing/hosemask

Exercise 5: Design your own freshwater hosing mask

- Change to the directory containing the sample freshwater hosing mask and create your own copy e.g.
 - cd ~/CSIRO_Mk3L/version-1.2/core/data/atmosphere/hosing
 cp hosemask hosemask_exp07
- Now use nano to edit this file:
 - nano hosemask_exp07
- The number 7 indicates land: don't change these values!
- Put 1 where you want the water to go, and 0 everywhere else

4. Design your own experiment

Design your own experiment

- Design and run your own experiment
- Ideas:
 - Change the epoch: simulate the past or future
 - Change the solar constant: $\pm 5\%$, $\pm 10\%$, more?
 - Change the CO₂ concentration: $\times \frac{1}{2}$, $\times 2$, $\times 4$?
 - Freshwater hosing: melting of the Greenland or Antarctic ice sheets
- Tips:
 - Use one of the pre-configured experiments as a basis
 - Think about how long to run the model: 50 years, 100 years?
 - Be careful to request sufficient resources using PBS
 - Unless you're feeling extremely confident, get me to check your experiments before you run them
 - Once you've started your experiment, use qstat to monitor progress