Using the CSIRO Mk3L climate system model Part 2: Working with Mk3L

Steven J. Phipps ARC Centre of Excellence for Climate System Science Climate Change Research Centre University of New South Wales

> CLIM3001 14 May 2015

- 2 Running Mk3L for 10 years
- 3 Your first experiment
- Analysing experiments

1. Running Mk3L for one day

Reminder: Using Katana

- Launch Xming (Programs > Xming > Xming).
- Launch PuTTY (Programs > PuTTY > PuTTY).
- Using PuTTY, do the following:
 - Select Connection > SSH > X11
 - Check the Enable X11 forwarding box
 - Select Session
 - In the Host Name box, enter katana.science.unsw.edu.au
 - Click Open
 - Log in using your zNumber and zPass

Running Mk3L for one day

- You did this last week!
- The basic command which runs Mk3L is simply:
 - ./model < input > output
- model is the executable. This is the "model".
- input is the *control file*. This contains the instructions which tell the model what to do.
- output contains diagnostic information generated by the model.
- The above command *executes* the model, feeds it the information contained within the control file and *redirects* the diagnostic information to an output file.

- Change to the directory containing the test scripts:
 - cd ~/CSIRO_Mk3L/version-1.2/core/scripts
- The script qsub_test_cpl runs the coupled model for one day.
- You ran this script last week.
- Using the less command, examine it carefully.
- Remember that lines beginning with # are comments.
- Look for the sections that do the following:
 - create the run directory
 - copy everything to this directory
 - run the model

• Create a run directory:

Create a run directory if it doesn't already exist, and delete the contents # of the directory if it does set RUN_DIR = ../../../mk31_tmp/ if (-e \$RUN_DIR) /bin/rm \$RUN_DIR/* if (! -e \$RUN_DIR) mkdir \$RUN_DIR

Copy the executable and the control file to the run directory:

Copy the model executable to the run directory
cp ../bin/model \$RUN_DIR

Copy the control file to the run directory
cp ../control/input_cpl_1day \$RUN_DIR/input

• Copy data files to the run directory:

Copy the restart files to the run directory cp ../data/atmosphere/restart/rest.start_default \$RUN_DIR/rest.start cp ../data/coupled/restart/oflux.nc_default \$RUN_DIR/oflux.nc cp ../data/ocean/restart/orest.nc_sync \$RUN_DIR/orest.nc

Copy the basic data files to the run directory cp ../data/atmosphere/basic/* \$RUN_DIR cp ../data/ocean/basic/* \$RUN_DIR

Copy the runoff relocation data to the run directory cp ../data/atmosphere/runoff/landrun21 \$RUN_DIR

Copy the CO2 radiative data file for 280ppm to the run directory cp ../data/atmosphere/co2/co2_data.280ppm.181 \$RUN_DIR/co2_data.181

• Copy more data files to the run directory:

Copy the flux adjustments to the run directory cp ../data/coupled/flux_adjustments/hfcor.nc_default \$RUN_DIR/hfcor.nc cp ../data/coupled/flux_adjustments/sfcor.nc_default \$RUN_DIR/sfcor.nc cp ../data/coupled/flux_adjustments/txcor.nc_default \$RUN_DIR/txcor.nc cp ../data/coupled/flux_adjustments/tycor.nc_default \$RUN_DIR/tycor.nc cp ../data/coupled/flux_adjustments/stcor.nc_default \$RUN_DIR/tycor.nc cp ../data/coupled/flux_adjustments/stcor.nc_default \$RUN_DIR/stcor.nc cp ../data/coupled/flux_adjustments/stcor.nc_default \$RUN_DIR/stcor.nc cp ../data/coupled/flux_adjustments/stcor.nc_default \$RUN_DIR/stcor.nc cp ../data/coupled/flux_adjustments/stcor.nc_default \$RUN_DIR/stcor.nc

• Change to the run directory and run the model:

```
# Change to the run directory
cd $RUN_DIR
```

```
# Run the model
./model < input > output
```

2. Running Mk3L for 10 years

Running Mk3L for 10 years

- This involves the same steps as running the model for one day:
 - create a run directory
 - copy everything that you need to this directory
 - run the model
- However, the model can only be run for one year at a time.
- So, in this case, we need to use a loop to run the model.

Exercise 2: Running Mk3L for 10 years

- Get the course material for this week:
 - cd tar zxvf /srv/scratch/z3210932/week2.tar.gz cd ~/week2
- The script qsub_10years runs the coupled model for 10 years.
- Using the less command, examine this script.
- How does it differ from the script which runs the model for one day?

Exercise 2: Running Mk3L for 10 years

• There's a bit more work required to set up the experiment...

Set name of run
set run = 10yrs

Set duration of run, in years
set DURATION = 10

Set stack sizes
limit stacksize unlimited
setenv KMP_STACKSIZE 16M

Set number of threads
setenv OMP_NUM_THREADS 4

Set name of Mk3L core directory
set coredir = \$HOME/CSIR0_Mk3L/version-1.2/core

Set name of run directory
set rundir = /srv/scratch/\$USER/\$run

Create run directory
mkdir -p \$rundir

Exercise 2: Running Mk3L for 10 years

• ... and we need to use a loop to run the model:

Run model for required number of years
while (\$year <= \$DURATION)</pre>

Convert year number to five-character string set yyyyy = \$year if (\$year <= 9999) set yyyyy = 0\$year if (\$year <= 999) set yyyyy = 00\$year if (\$year <= 99) set yyyyy = 000\$year if (\$year <= 9) set yyyyy = 000\$year</pre>

Run model for one year
./model < input > output.\$yyyyy

Convert ocean model output to netCDF
./convert_averages fort.40 com.\${run}.\${yyyyy}.nc
/bin/rm fort.40

Rename atmosphere model restart file
/bin/mv rest.end rest.start

```
# Increment year number
@ year ++
```

end

Portable Batch System (PBS) options

• The script that you just examined includes the following lines:

- **#PBS** -1 walltime=24:00:00
- #PBS -1 vmem=1gb
- #PBS -1 nodes=1:ppn=4
- These request the resources needed to run the job.
- The job is expected to take up to 24 hours (walltime).
- The job will require up to 1 GB of memory (vmem).
- We want to run on one node (nodes) and four cores (ppn).
- When you design your own experiments, walltime is the only option that you might need to change.

Exercise 3: Your first experiment

- Choose one of the following experiments:
 - $\begin{array}{lll} & \text{exp01} & \text{Control simulation} \\ & \text{exp02} & \text{Mid-Holocene} (6,000 \text{ years BP}) \\ & \text{exp03} & \text{Last Glacial Maximum} (21,000 \text{ years BP}) \\ & \text{exp04} & \text{Snowball Earth} \\ & \text{exp05} & 2 \times \text{CO}_2 \\ & \text{exp06} & \text{Water hosing} \end{array}$
- Each experiment has already been set up for you.

Exercise 3: Your first model experiment

- For your experiment, change to the appropriate directory e.g.
 - cd ~/week2/exp01
- Now start your experiment e.g.

qsub qsub_exp01

- Look at the script which carries out each experiment.
- How does it differ from the control simulation (exp01)?
- What would you change if you wanted to run your experiment for 50 years, rather than 10 years?

4. Analysing experiments

Getting files from katana

 Mount your H drive by entering the command: network

• You will need to enter your zPass. This creates the directory:

~/hdrive

- Your can copy/move files to this directory.
- The contents of this directory can be accessed in two ways:
 - from within Windows (as the H: drive)
 - online via http://myfiles.unsw.edu.au
- To access files online via the UNSW File System, you will need to log in using your zNumber and zPass. You will then find the contents of your H drive under My Home Drive.

More Ferret commands

cancel mode logo fill/title="My title" fill/lev=1d fill/lev=1dc contour/over contour/over/nolab go land frame/file=file.gif Turns off the Ferret logo Specifies a plot title Use a spacing of 1.0 between contour levels Use a spacing of 1.0 and centre around zero Overlay contours Overlay contours without adding a label Overlay continental boundaries Save the image to the file file.gif

- Much, much, much more at:
 - http://ferret.pmel.noaa.gov/Ferret/documentation/users-guide

Exercise 4: More Ferret commands

• Change back to the directory containing this week's course material:

cd ~/week2

• Load and run Ferret:

module load ferret ferret

• Within Ferret, load some atmosphere model output:

```
yes? use stsc_exp01.nc
```

Analysing experiments

Exercise 4: More Ferret commands

• Type the following commands:

```
yes? cancel mode logo
yes? fill/title="Screen temperature (K)" tsc[k=@ave,l=@ave]
yes? go land
yes? frame/file=temperature.gif
```

- Now try generating some different plots...
- Generate some GIF images and copy the files back to your local machine.

Analysing experiments

Even more Ferret commands

Datasets and variable definitions:

```
use stsc_exp01.nc
use stsc_exp04.nc
let dt = tsc[d=2] - tsc[d=1]
```

Setting up the plot window:

```
set window n
set window/size=1.0
set window/aspect=0.7
```

Send graphics to window n Resize window to 1.0 of full Change aspect ratio to 0.7

Analysing experiments

Even more Ferret commands

• Plot layout:

set viewport ll set viewport left set viewport upper Lower left of window [also: lr, ul, ur] Left half of window [also: right] Upper half of window [also: lower]

Colour palettes:

palette blue_darkred
spawn Fpalette '*'
go try_palette blue_darkred

User colour palette blue_darkred List all available palettes Display palette blue_darkred

Analysing experiments

Even more Ferret commands

Customising plots:

<pre>shade/set_up/options</pre>	data
ppl commands	
ppl shade	

Set up a plot Customise the plot using ppl Generate the plot

fill, plot and shade options:

shade/levels=2d
shade/levels=2dc
shade/hlimits=0:10:1
shade/vlimits=0:10:1
shade/title="..."

Use a spacing of 2 between levels Ditto, with the levels centred around zero Horizontal axis range and interval Vertical axis range and interval Set the plot title to ...

Analysing experiments

Even more Ferret commands

• ppl commands:

labset	Sets character heights for labels
axlsze	Sets axis label heights
shakey	Controls the shade key
axlint	Sets numeric label interval for axes
xfor	Sets format of x-axis numeric labels
yfor	Sets format of y-axis numeric labels
xlab	Sets label of x-axis
ylab	Sets label of y-axis
	labset axlsze shakey axlint xfor yfor xlab ylab

Analysing experiments

Even more Ferret commands

- Other commands:
- go margins go remove_logo go unlabel n go land

Adjust the margins surrounding a plot Remove the Ferret logo Remove label n (n \geq 4) Overlay continental boundaries

- Much, much, much more at:
 - http://ferret.pmel.noaa.gov/Ferret/documentation/users-guide

Ferret scripts

- It is not necessary to re-type Ferret commands every time you want to generate a plot.
- Instead, you can write a Ferret script.
- A script contains:
 - a series of Ferret commands
 - comment lines (lines beginning with !)
- A Ferret script can be identified by a file name ending in .jnl.
- To run a script, use the go command.
- For example, to run a script called plot.jnl you type:

yes? go plot

Exercise 5: Ferret scripts and plotting

• Change back to the directory containing this week's course material:

cd ~/week2

- This contains three Ferret scripts.
- Load and run Ferret. Now run each script by typing e.g.

yes? go plot1

- What happens?
- Examine each script using less. See how the new Ferret commands that you have learnt this week are being used.

Analysing experiments

nano

- nano is a simple Linux text editor.
- To edit a file, enter the command:

nano <file>

- Some basic nano commands are:
 - Ctrl-G Get Help Ctrl-O Write (Save) Ctrl-X Exit

Exercise 6: Editing Ferret scripts

- Create a copy of one of the Ferret scripts, using a command such as:
 - cp plot1.jnl new_plot.jnl
- Use nano to examine and edit this file.
- Using the three sample Ferret scripts as a starting point, try generating some of your own plots!