Modelling using CSIRO Mk3L Part 3: Analyse your own experiment

Steven J. Phipps ARC Centre of Excellence for Climate System Science Climate Change Research Centre University of New South Wales

> SHAPE Training Workshop 24–25 February 2015

1. Working with Ferret

More Ferret commands

```
cancel mode logo
fill/title="My title"
fill/lev=1d
fill/lev=1dc
contour/over
contour/over/nolab
go land
frame/file=file.gif
```

Turns off the Ferret logo Specifies a plot title Use a spacing of 1.0 between contour levels Use a spacing of 1.0 and centre around zero Overlay contours Overlay contours without adding a label Overlay continental boundaries Save the image to the file file.gif

- Much, much, much more at:
 - http://ferret.pmel.noaa.gov/Ferret/documentation/users-guide

Exercise 1: More Ferret commands

• Change to the directory containing the course material for Part 2:

- cd ~/<NAME>/material
- Load and run Ferret:

module load ferret ferret

• Within Ferret, load some atmosphere model output:

```
yes? use stsc_exp01.nc
```

Exercise 1: More Ferret commands

Type the following commands:

```
yes? cancel mode logo
yes? fill/title="Screen temperature (K)" tsc[k=@ave,l=@ave]
yes? go land
yes? frame/file=temperature.gif
```

- Now try generating some different plots...
- Save your plots by generating GIF images.

Next steps: where to from here?

Even more Ferret commands

Datasets and variable definitions:

```
use stsc_exp01.nc
use stsc_exp04.nc
let dt = tsc[d=2] - tsc[d=1]
```

Setting up the plot window:

```
set window n
set window/size=1.0
set window/aspect=0.7
```

Send graphics to window n Resize window to 1.0 of full Change aspect ratio to 0.7

• Plot layout:

set viewport ll set viewport left set viewport upper Lower left of window [also: lr, ul, ur] Left half of window [also: right] Upper half of window [also: lower]

Colour palettes:

palette blue_darkred
spawn Fpalette '*'
go try_palette blue_darkred

User colour palette blue_darkred List all available palettes Display palette blue_darkred

Customising plots:

shade/set_up/options	data
ppl commands	
ppl shade	

Set up a plot Customise the plot using ppl Generate the plot

fill, plot and shade options:

shade/levels=2d
shade/levels=2dc
shade/hlimits=0:10:1
shade/vlimits=0:10:1
shade/title="..."

Use a spacing of 2 between levels Ditto, with the levels centred around zero Horizontal axis range and interval Vertical axis range and interval Set the plot title to ...

• ppl commands:

ppl	labset	Sets character heights for labels
ppl	axlsze	Sets axis label heights
ppl	shakey	Controls the shade key
ppl	axlint	Sets numeric label interval for axes
ppl	xfor	Sets format of x-axis numeric labels
ppl	yfor	Sets format of y-axis numeric labels
ppl	xlab	Sets label of x-axis
ppl	ylab	Sets label of y-axis

- Other commands:
- go margins go remove_logo go unlabel n go land

Adjust the margins surrounding a plot Remove the Ferret logo Remove label n ($n \ge 4$) Overlay continental boundaries

- Much, much, much more at:
 - http://ferret.pmel.noaa.gov/Ferret/documentation/users-guide

Ferret scripts

- It is not necessary to re-type Ferret commands every time you want to generate a plot.
- Instead, you can write a Ferret script.
- A script contains:
 - a series of Ferret commands
 - comment lines (lines beginning with !)
- A Ferret script can be identified by a file name ending in .jnl.
- To run a script, use the go command.
- For example, to run a script called plot.jnl you type:

yes? go plot

Exercise 2: Ferret scripts and plotting

• Change back to the directory containing the course material:

cd ~/<NAME>/material

- This contains three Ferret scripts.
- Load and run Ferret. Now run each script by typing e.g.

yes? go plot1

- What happens?
- Examine each script using less. See how the new Ferret commands that you have learnt today are being used.

2. Analyse your own experiment

Exercise 1: Analyse your own experiment

- Yesterday, you ran your own experiment.
- Did it work? If not, why not?
- The output was saved in a directory called:
 - ~/<NAME>/\$run
- Here, \$run is the name of your experiment (exp01 etc).
- Now change to the directory for your experiment e.g.
 - cd ~/<NAME>/\$run
- Use Ferret to analyse and plot the data.

3. Next steps: where to from here?

Next steps: where to from here?

• Get a copy of CSIRO Mk3L. Apply for an account on the repository:

http://www.tpac.org.au/resources/csiro-mk31-source-code/

- Run CSIRO Mk3L on katana, on a cluster at your own institution, on your PC, on your laptop, on your smartphone...
- Experiment with the model and get to know it.
- Subscribe to the mailing list:

https://www.lists.unsw.edu.au/mailman/listinfo/mk31-users

Next steps: where to from here?

• Ask questions:

CSIRO Mk3L users mailing list Me mk31-users@lists.unsw.edu.au s.phipps@unsw.edu.au

- Share your experiences with other users.
- Share your enhancements to the model.
- Remember what a privilege it is to be a climate system modeller.
- Have fun!

With great power, comes great responsibility

